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Abstract

We present an optimization-level domain decomposition (DD) preconditioner for
the solution of advection dominated elliptic linear–quadratic optimal control problems.
The DD preconditioner is based on a decomposition of the optimality conditions for
the elliptic linear–quadratic optimal control problem into smaller subdomain optimal-
ity conditions with Dirichlet boundary conditions for the states and the adjoints on the
subdomain interfaces. These subdomain optimality conditions are coupled through
Robin transmission conditions for the states and the adjoints. The parameters in the
Robin transmission condition depend on the advection. This decomposition leads to a
Schur complement system in which the unknowns are the state and adjoint variables
on the subdomain interfaces. The Schur complement operator is the sum of subdomain
Schur complement operators, the application of which is shown to correspond to the
solution of subdomain optimal control problems, which are essentially smaller copies
of the original optimal control problem. We show that, under suitable conditions, the
application of the inverse of the subdomain Schur complement operators requires the
solution of a subdomain elliptic linear–quadratic optimal control problem with Robin
boundary conditions for the state.

Numerical tests for problems with distributed and with boundary control show that
the dependence of the preconditioners on mesh size and subdomain size is comparable
to its counterpart applied to a single advection dominated equation. These tests also
show that the preconditioners are insensitive to the size of the control regularization
parameter.
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Domain Decomposition Methods for
Advection Dominated

Linear–Quadratic Elliptic Optimal
Control Problems

1 Introduction

Optimization problems governed by (systems of) advection dominated elliptic partial dif-
ferential equations (PDEs) arise in many science and engineering applications, see, e.g.,
[1, 2, 15, 16, 17, 22, 36, 41], either directly or as subproblems in Newton-type or sequen-
tial quadratic optimization algorithms for the solution of optimization problems governed
by (systems of) nonlinear PDEs. This paper is concerned with optimization–level domain
decomposition preconditioners for such problems. We focus our presentation on the linear
quadratic optimal control problem

minimize
1
2

�
Ω
� y � x �����y � x ��� 2dx � α

2

�
Ω

u2 � x � dx (1.1)

subject to� ε∆y � x ��� a � x ��� ∇y � x ��� r � x � y � x �	� f � x ��� u � x ��� x � Ω � (1.2a)
y � x ��� 0 � x � ∂ΩD � (1.2b)

ε
∂

∂n
y � x ��� g � x ��� x � ∂ΩN � (1.2c)

where ∂ΩD � ∂ΩN are boundary segments with ∂ΩD � ∂Ω � ∂ΩN , a � f � g � r���y are given func-
tions, ε � α � 0 are given scalars, and n denotes the outward unit normal. Assumptions on
these data that ensure the well-posedness of the problem will be given in the next section.
The material presented in this paper can be extended to boundary control problems and
several other objective functionals. The problem (1.1), (1.2) is an optimization problem in
the unknowns y and u, referred to as the state and the control, respectively.

Our domain decomposition method for the solution of (1.1), (1.2) generalizes the
Neumann-Neumann domain decomposition method, which is well known for the solution
of single PDEs (see, e.g., the books [32, 38, 39]) to the optimization context. Optimization–
level Neumann-Neumann domain decomposition methods for elliptic optimal control prob-
lems were first introduced in [19, 20] for problems without advection. However, the pres-
ence of strong advection can significantly alter the behavior of solution algorithms and
typically requires their modification. For domain decomposition methods applied to single
advection dominated PDEs a nice overview of this issue is given in [39, Sec. 11.5.1]. The
aim of our paper is to tackle this issue for optimal control problems.

The domain decomposition methods presented in this paper are formulated at the opti-
mization level. The domain Ω is partitioned into non-overlapping subdomains. Our domain
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decomposition methods decompose the optimality conditions for (1.1), (1.2). Auxiliary
state and so-called adjoints (Lagrange multipliers) are introduced at the subdomain inter-
faces. The states, adjoints, and controls in the interior of the subdomains are then viewed as
implicit functions of the states and adjoints on the interface, defined through the solution of
subdomain optimality conditions. To obtain a solution of the original problem (1.1), (1.2),
the states and adjoints on the interface have to be chosen such that the implicitly defined
states, adjoints, and controls in the interior of the subdomains satisfy certain Robin trans-
mission conditions at the interface boundaries. These transmission conditions take into
account the advection dominated nature of the state equation and are motivated by [3, 4].

The optimization-level domain decomposition described in the previous paragraph
leads to a Schur complement formulation for the optimality system. The application of
the Schur complement to a given vector of states and adjoints on the interface, requires
the parallel solution of subdomain optimal control problems that are essentially copies of
(1.1), (1.2) restricted to the subdomains, but with Dirichlet boundary conditions at the sub-
domain interfaces. The Schur complement is the sum of subdomain Schur complements.
Each subdomain Schur complement is shown to be invertible. The application of the in-
verse of each subdomain Schur complement requires the solution of another subdomain
optimal control problem that is also essentially a copy of (1.1), (1.2) restricted to the re-
spective subdomain, but with Robin boundary conditions at the subdomain interfaces. The
inverses of the subdomain Schur complements are used to derive preconditioners for the
Schur complement.

Section 2 briefly reviews results on the existence, uniqueness and characterization of so-
lutions of (1.1), (1.2). The domain decomposition, interface conditions, subdomain Schur
complements and their inverses are discussed in Section 3 using a variational point of view.
The corresponding algebraic form, properties of the subdomain Schur complement matri-
ces and some implementation details are presented in Section 4. The performance of the
preconditioners on some model problems with distributed control and boundary control are
documented in Section 5.

Throughout this paper we use the following notation for norms and inner products.
Let G � Ω ��� d or G � ∂Ω. We define  f � g ! G �#" G f � x � g � x � dx, $ v $ 20 %G �#" G v2 � x � dx,&
v
& 2
1 %G �'" G ∇v � x �(� ∇v � x � dx, and $ v $ 21 %G �)$ v $ 20 %G � & v & 21 %G. If G � Ω we omit G and simply

write  f � g ! , etc.

2 The Model Problem

Multiplication of the advection diffusion equation (1.2) by a test function

φ � Y def�+* φ � H1 � Ω � : φ � 0 on ∂ΩD , �
integration over Ω, and performing integration by parts leads to the following weak form

a � y � φ ��� b � u � φ �-�# f � φ !��. g � φ ! ∂ΩN / φ � Y � (2.1)

10



where

a � y � φ �0� �
Ω

ε∇y � x �(� ∇φ � x ��� a � x ��� ∇y � x � φ � x ��� r � x � y � x � φ � x � dx � (2.2a)

b � u � φ �0� � �
Ω

u � x � φ � x � dx � (2.2b) f � φ !1� �
Ω

f � x � φ � x � dx �  g � φ ! ∂ΩN � � ∂ΩN

g � x � φ � x � dx  (2.2c)

We assume that

f � L2 � Ω ��� a �.2 W 1 %∞ � Ω �43 2 � r � L∞ � Ω ��� g � L2 � ∂ΩN ��� ε � 0 � (2.3a)

∂ΩN
�65 x � ∂Ω : a � x ��� n � x �87 0 9 (2.3b)

and
r � x �(� 1

2 ∇ � a � x �87 r0 � 0 a.e. in Ω  (2.3c)

If ∂ΩD has a nonempty relative interior, then (2.3c) can be replaced by

r � x �(� 1
2 ∇ � a � x �87 r0 7 0 a.e. in Ω  (2.3d)

Since

a � y � φ �0� �
Ω

ε∇y � x ��� ∇φ � x ��� 1
2 a � x �(� ∇y � x � φ � x �(� 1

2a � x �(� ∇φ � x � y � x ��:� r � x ��� 1
2∇ � a � x �4� y � x � φ � x � dx � �

ΩN

1
2 a � x ��� n y � x � φ � x � dx � (2.4)

the assumptions (2.3), guarantee that the bilinear form a is continuous on Y � Y and Y -
elliptic (e.g., [31, p. 165], [34, Sec III.1], or [30, Sec. 2.5]).

We are interested in the solution of the optimal control problem

minimize
1
2
$ y ���y $ 20 � α

2
$ u $ 20 � (2.5a)

subject to a � y � φ ��� b � u � φ �-�; f � φ !��. g � φ ! ∂ΩN / φ � Y � (2.5b)
y � Y � u � U �

where the control space is given by U � L2 � Ω � and the state space Y is as specified above.

As we have stated before, the bilinear form a is continuous on Y � Y and Y -elliptic
under the assumptions (2.3). Hence the theory in [28, Sec. II.1] guarantees the existence of
a unique solution � y � u �8� Y � U of (2.5).

Theorem 2.1 If (2.3) are satisfied, the optimal control problem (2.5) has a unique solution� y � u �8� Y � U.
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The theory in [28, Sec. II.1] also provides necessary and sufficient optimality condi-
tions, which can be best described using the Lagrangian

L � y � u � p �<� 1
2
$ y ���y $ 20 � α

2
$ u $ 20 � a � y � p ��� b � u � p ���= f � p !(�� g � p ! ∂ΩN  (2.6)

The necessary and, for our model problem, sufficient optimality conditions can be obtained
by setting the partial Fréchet-derivatives of (2.6) with respect to states y � Y , controls u � U
and adjoints p � Y equal to zero. This gives the following system consisting of
the adjoint equation

a � ψ � p �	�>�? y � ŷ � ψ ! / ψ � Y � (2.7a)

the gradient equation

b � w � p ��� α  u � w !<� 0 / w � U � (2.7b)

and the state equation

a � y � φ ��� b � u � φ �-�# f � φ !��. g � φ ! ∂ΩN / φ � Y  (2.7c)

The gradient equation (2.7b) simply means that

p � x �	� αu � x � x � Ω (2.8)

and (2.7a) is the weak form of� ε∆p � x �(� a � x �(� ∇p � x ���.� r � x ��� ∇ � a � x ��� p � x �@�A�B� y � x ��� ŷ � x ����� x � Ω � (2.9a)
p � x �	� 0 � x � ∂ΩD � (2.9b)

ε
∂

∂n
p � x ��� a � x �(� n � x � p � x �	� 0 � x � ∂ΩN  (2.9c)

After finite element discretization, the optimal control problem (2.5) leads to a large-
scale linear quadratic optimization problem. It is well known that application of the stan-
dard linear finite element method to advection–diffusion equations (1.2) leads to computed
solutions with large spurious oscillations, unless the mesh size is sufficiently small relative
to the Péclet number (e.g., [31, Sec. 8], [34], or [30]). To allow relatively coarse meshes,
we use the streamline upwind/Petrov–Galerkin (SUPG) method [7]. We mention that if the
SUPG method, or other stabilized finite element methods are used, the optimality system of
the linear quadratic optimization problem corresponding to the discretization of the optimal
control problem (2.5) is in general no longer equal to the discretization of the optimality
system (2.7). The differences are due to the stabilization term. For a more detailed treat-
ment, we refer to [1, 8]. The papers [1, 8] show that for linear finite elements and suitable
choice of the stabilization parameter, these differences are small. In our numerical solution
of the problem, we discretize the optimal control problem (2.5) using the SUPG method.
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3 Domain Decomposition Schur Complement
Formulation of the Example Problem

3.1 Discretization of the Example Problem

We discretize (2.5) using conforming linear finite elements. Let 5 Tl 9 be a triangulation of
Ω. We divide Ω into nonoverlapping subdomains Ωi, i � 1 ��4�4� s, such that each Tl belongs
to exactly one Ωi. We define

Γi � ∂Ωi � ∂Ω

and
Γ �6C s

i D 1Γi 
The unit outward normal of Ωi is denoted by ni. The state y is approximated using piece-
wise linear functions. We define the finite dimensional spaces

Y h � * φh � H1 � Ω � : φh � 0 on ∂ΩD � φh
&
Tl � P1 � Tl � for all l , � (3.1)

Y h
i � * φh � H1 � Ωi � : φh � 0 on ∂Ωi E ∂ΩD � φh

&
Tl � P1 � Tl � for all Tl

� Ωi , � i � 1 �4��F� s �
Y h

i % 0 �HG φh � Y h
i : φh � 0 on Γi I � i � 1 �4��F� s 

We can identify � φh � i � Y h
i % 0 with a function in Y h if we extend � φh � i by zero onto Ω. We

also introduce the ‘trace’ spaces

Y h
i % Γi
� Y h

i � Y h
i % 0 � i � 1 �4��F� s �

and
Y h

Γ � Y h �KJLC s
i D 1Y h

i % 0 M �
where in the latter case, Y h

i % 0 is viewed as a subspace of Y h by extending vi � Y h
i % 0 by zero

onto Ω.

For our discretization of the control we use piecewise linear functions in Ω. However,
our discretization of the control is somewhat nonstandard. A straightforward discretization
of the control space by piecewise linear functions would lead to

Uh � * uh � C0 � Ω � : u � P1 � Tl � for all Tl
� Ω ,  (3.2)

A domain decomposition formulation based on such a discretization would introduce ‘in-
terface controls’ (dotted hat function in the left plot in Figure 3.1) defined on a ‘band’ of
width O � h � around ∂Ωi E ∂Ω j, i N� j. See the left plot in Figure 3.1. Since the evaluation of
u � L2 � Ω � on ∂Ωi E ∂Ω j does not make sense, we avoid interface controls.

We discretize the control u by a function which is continuous on each Ωi, i � 1 ����O� s,
and linear on each Ωi E Tl . The discretized control is not assumed to be continuous on
∂Ωi E ∂Ω j, i N� j. In particular, for each point xk � ∂Ωi E ∂Ω j, i N� j, there are two discrete
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controls uki , uk j belonging to subdomains Ωi and Ω j, respectively (see the right plot in
Figure 3.1). Since the control space is L2 � Ω � , this is a legitimate discretization. We define
the discrete control spaces

Uh
i � * uh � C0 � Ωi � : uh � P1 � Tl � for all Tl

� Ωi ,  (3.3)

We identify Uh
i with a subspace of L2 � Ω � by extending functions ui � Uh

i by zero onto Ω.
We define

Uh �PC s
i D 1Uh

i
� L2 � Ω ��Q QSR RST T R R U USV V R R

...
...
...
...........

Ωi Ω jxk

Q QWR RWT T R R V VWU UWV V R R
Ωi Ω jxk

Figure 3.1. Sketch of the control discretization for Ω XZY
For advection dominated problems the standard Galerkin method applied to the state

equation (2.1) produces strongly oscillatory approximations, unless the mesh size h is cho-
sen sufficiently small relative to ε [\$ a $ 0 %∞. To obtain approximate solutions of better quality
on coarser meshes, various stabilization techniques have been proposed. For an overview
see [31, Secs. 8.3.2,8.4] or [34, Sec.3.2]. We use the streamline upwind/Petrov Galerkin
(SUPG) method of Hughes and Brooks [7]. The SUPG method computes an approximation
yh � Y h of the solution y of the state equation (2.5b) by solving

ah � yh � φh ��� bh � uh � φh �	�; f � φh ! h �. g � φh ! ∂ΩN / φh � Y h � (3.4)

where

ah � yh � φh �]� a � yh � φh ��� ∑
Te ^ Ω

τe  O� ε∆yh � a � ∇yh � ryh � a � ∇φh ! Te � (3.5a)

bh � uh � φh �]� b � uh � φh ��� ∑
Te ^ Ω

� τe  uh � a � ∇φh ! Te � (3.5b) f � φh ! h �  f � φh !�� ∑
Te ^ Ω

τe  f � a � ∇φh ! Te � (3.5c)

and τe � 0 is a stabilization parameter that is chosen depending on the mesh size and the
problem parameters ε, a and r.

Our discretization of the optimal control problem (2.5) is given by

minimize
1
2
$ yh �Z�y $ 20 � α

2
$ uh $ 20 � (3.6a)

subject to ah � yh � φh ��� bh � uh � φh �	�# f � φh ! h �. g � φh ! ∂ΩN / φh � Y h � (3.6b)

yh � Y h � uh � Uh 
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The necessary and sufficient optimality conditions for (3.6) are given by

ah � ψh � ph ���. yh � ψh !<�# ŷ � ψh ! / ψh � Y h � (3.7a)

α  uh � µh !�� bh � µh � ph �<� 0 / µh � Uh � (3.7b)

ah � yh � φh ��� bh � uh � φh �<�# f � φh ! h �. g � φh ! Γn / φh � Y h  (3.7c)

The system (3.7) may also be viewed as a discretization of (2.7). However, as we have
discussed already at the end of Section 2, the discretization of the system (2.7) of optimality
conditions using SUPG will lead to a slightly different system than (3.7). Everything that
follows can be easily applied to the SUPG discretization of the system (2.7) of optimality
conditions.

3.2 Domain Decomposition of the Example Problem

To decompose the discrete optimality conditions (3.7), we need local bilinear forms cor-
responding to the subdomains Ωi. For advection dominated problems, this requires some
care. See, e.g., [39, Sec.11.5.1] for an overview. The straight forward restriction of a
defined in (2.2a) to the subdomain Ωi is given by_

ai � yh � φh �	� �
Ωi

ε∇yh � x ��� ∇φh � x ��� a � x ��� ∇yh � x � φh � x ��� r � x � yh � x � φh � x � dx  (3.8)

Integration by parts and application of the chain rule to ∇ �`� a � x � φh � x ��� show that_
ai � yh � φh �1� �

Ωi

ε∇yh � x ��� ∇φh � x ��� 1
2a � x �(� ∇yh � x � φh � x �� 1

2 a � x �(� ∇φh � x � yh � x ���.� r � x �(� 1
2∇ � a � x ��� yh � x � φh � x � dx� 1

2

�
∂Ωi a ∂ΩN

a � x ��� ni yh � x � φh � x � dx � 1
2

�
∂Ωi b ∂Ω

a � x �(� ni yh � x � φh � x � dx

for all yh � φh � Y h
i . Because of the last boundary integral, the assumptions (2.3) no longer

guarantee that ai is Y h
i –elliptic. Hence, we follow [4] and use the local bilinear form

ai � yh � φh �1� _
ai � yh � φh �(� 1

2

�
∂Ωi b ∂Ω

a � x ��� ni yh � x � φh � x � dx (3.9)� �
Ωi

ε∇yh � x ��� ∇φh � x ��� 1
2a � x �(� ∇yh � x � φh � x �� 1

2 a � x �(� ∇φh � x � yh � x ���.� r � x �(� 1
2∇ � a � x ��� yh � x � φh � x � dx� 1

2

�
∂Ωi a ∂ΩN

a � x ��� ni yh � x � φh � x � dx 
Note that

s

∑
i D 1

1
2

�
∂Ωi b ∂Ω

a � x ��� ni yh � x � φh � x � dx � s

∑
i D 1

∑
j cD i

1
2

�
∂Ωi a ∂Ω j

a � x �(� ni yh � x � φh � x � dx � 0
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since each boundary integral " ∂Ωi a ∂Ω j
appears twice in the summation, once with in-

tegrand a � x ��� ni yh � x � φh � x � , the other time with integrand a � x ��� n j yh � x � φh � x �d�e� a � x �	�
ni yh � x � φh � x � . Hence

s

∑
i D 1

ai � yh � φh �	� s

∑
i D 1

_
ai � yh � φh �	� a � yh � φh � / yh � φh � Y h

i �
i.e., the global problem is not altered.

Accounting for the SUPG terms, we define

ai % h � yh � φh �f� _
ai � yh � ψh �(� 1

2

�
∂Ωi b ∂ΩN

a � x ��� ni yh � x � φh � x � dx� ∑
Te ^ Ωi

τe  O� ε∆yh � a � ∇yh � ryh � a � ∇φh ! Te � (3.10a)

bi % h � uh � φh �f� �B uh � φh ! Ωi � ∑
Te ^ Ωi

� τe  uh � a � ∇φh ! Te � (3.10b) f � φh ! Ωi % h �  f � φh ! Ωi � ∑
Te ^ Ωi

τe  f � a � ∇φh ! Te  (3.10c)

Now, we decompose the optimality system (3.7) by introducing artificial state and ad-
joint variables yΓ � pΓ � Y h

Γ on the subdomain interfaces. Given yΓ � pΓ � Y h
Γ we consider

ai % h � ψi � pi ���. yi � ψi ! Ωi �# ŷ � ψi ! Ωi / ψi � Y h
i % 0 � (3.11a)

bi % h � µi � pi ���. ui � µi ! Ωi � 0 / µi � Uh
i � (3.11b)

ai % h � yi � φi ��� bi % h � ui � φi ���# f � φi ! Ωi % h �. g � φi ! ∂Ωi a ∂ΩN / φi � Y h
i % 0 � (3.11c)

yi � yΓ � pi � pΓ on Γi � (3.11d)

and

s

∑
i D 1

ai % h � yi � R a
h � vΓ � qΓ ����� bi % h � ui � R a

h � vΓ � qΓ ���� ai % h � R s
h � vΓ � qΓ �g� pi ���. yi � R s

h � vΓ � qΓ ��! Ωi� s

∑
i D 1
 f � R a

h � vΓ � qΓ ��! Ωi % h �. g � R a
h � vΓ � qΓ ��! ∂Ωi a ∂ΩN �. ŷi � R s

h � vΓ � qΓ ��! Ωi (3.12)

for all vΓ � qΓ � Y h
Γ , where

R s
h � R a

h : Y h
Γ � Y h

Γ h Y h (3.13a)

are continuous linear extension operators with

R s
h � vΓ � qΓ �`� x �<� vΓ � x �g� R a

h � vΓ � qΓ �i� x �<� qΓ � x ��� (3.13b)

for all x � Γ and for all vΓ � qΓ � Y h
Γ .
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Theorem 3.1 If � y � u � p �j� Y h � Uh � Y h solves (3.7), then yi � y
&
Ωi , ui � u

&
Ωi , pi � p

&
Ωi ,

i � 1 �4��4� s, solve (3.11), (3.12).

If � yΓ � pΓ �k� Y h
Γ � Y h

Γ is such that the solution � yi � ui � pi �l� Y h
i � Uh

i � Y h
i , of (3.11),

i � 1 ���4O� s, satisfies the interface conditions (3.12), then � y � u � p �8� Y h � Uh � Y h given by
y
&
Ωi � yi, u

&
Ωi � ui, p

&
Ωi � pi, i � 1 ��4�O� s, solves (3.7).

The proof of this result is analogous to the proof of [32, Lemma 1.2.1] and is omitted.

We will view the solution of (3.11) as an affine linear function of � yΓ � pΓ � and then
consider (3.12) as a linear equation in � yΓ � pΓ � . We will describe this process using the
variational formulation in Subsection 3.3 and we will describe the algebraic version in
Section 4. The latter is used computationally. Section 4 can be read without knowledge
of the material in the remainder of this section. The main purpose of the remainder of this
section is to connect the subproblems that need to be solved to the original optimal control
problem (1.1).

We close this subsection with an interpretation of (3.11) and (3.12). We note that any
continuous linear extensions with (3.13b) can be admitted. One choice would be to define
R s

h � vΓ � qΓ � as the extension of vΓ onto Ω and R a
h � vΓ � qΓ � as the extension of qΓ onto Ω.

However, the Schur complement formulation, which perhaps is most easily introduced
from the matrix point of view (see Section 4), corresponds to different extension operators.
These will be introduced in Section 3.3.

Remark 3.2 i. The systems (3.11), i � 1 �4��F� s, can be interpreted as the finite element
discretization of� ε∆yi � x ��� a � x ��� ∇yi � x ��� r � x � yi � x ��� f � x ��� ui � x � in Ωi � (3.14a)

yi � x ��� 0 on ∂Ωi E ∂ΩD � (3.14b)

ε
∂

∂n
yi � x ��� g � x � on ∂Ωi E ∂ΩN � (3.14c)

yi � x ��� yΓ � x � on Γi � (3.14d)� ε∆pi � x ��� a � x ��� ∇pi � x ��S� r � x ��� ∇ � a � x �4� pi � x ���A�B� yi � x ��� ŷ � x ��� in Ωi � (3.14e)
pi � x ��� 0 � on ∂Ωi E ∂ΩD � (3.14f)

ε
∂

∂n
pi � x ��� a � x ��� n � x � pi � x ��� 0 on ∂Ωi E ∂ΩN � (3.14g)

pi � x ��� pΓ � x � on Γi � (3.14h)
αui � x �(� pi � x ��� 0 on ∂Ω E ∂Ωi  (3.14i)

ii. Applying the arguments in [20] to the advection diffusion case, the system (3.14)
may be viewed as the necessary and sufficient optimality conditions for

minimize 1
2

�
Ωi

� yi � x ��� ŷ � x ��� 2dx � α
2

�
Ωi

u2
i � x � dx � �

Γi

ε
∂

∂ni
yi � x � pΓ � x � dx � (3.15a)
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subject to� ε∆yi � x ��� a � x ��� ∇yi � x ��� r � x � yi � x ��� f � x ��� ui � x � in Ωi � (3.15b)
yi � x ��� 0 on ∂Ωi E ∂ΩD � (3.15c)

ε
∂

∂n
yi � x ��� g � x � on ∂Ωi E ∂ΩN � (3.15d)

yi � x ��� yΓ � x � on Γi � (3.15e)

Note that since yi � x ��� yΓ � x � on Γi is given, the objective function (3.15a) can be replaced
by

1
2

�
Ωi

� yi � x �(� ŷ � x ��� 2dx � α
2

�
Ωi

u2
i � x � dx � �

Γi m ε
∂

∂ni
� 1

2a � x � ni n yi � x � pΓ � x � dx 
The addition of " Γi

� 1
2 a � x � ni yi � x � pΓ � x � dx ��" Γi

� 1
2a � x � ni yΓ � x � pΓ � x � dx only shifts the ob-

jective function by a constant, but does not change the solution yi � ui � pi of (3.15). The latter
form of the objective function emphasizes the connection with the transmission conditions
(3.12) which will be discussed next.

iii. The interface condition (3.12) can be interpreted asJ ε ∂
∂ni
� 1

2a � x � ni M yi � x �f� �PJ ε ∂
∂n j
� 1

2 a � x � n j M y j � x � x � ∂Ωi E ∂Ω j �J ε ∂
∂ni
� 1

2a � x � ni M pi � x �f� � J ε ∂
∂n j
� 1

2 a � x � n j M p j � x � x � ∂Ωi E ∂Ω j � (3.16)

for i � j � 1 ���4O� s, i N� j. In fact, let φ � R a
h � vΓ � qΓ �o� ∑s

i D 1 φi, ψ � R s
h � vΓ � qΓ �o� ∑s

i D 1 ψi.
Equations (3.11), i � 1 ����F� s, and (3.12) imply

s

∑
i D 1

ai % h � yi � φ ��� bi % h � ui � φ ��� ai % h � ψ � pi ���. yi � ψ ! Ωi� s

∑
i D 1
 f � φ ! Ωi % h �. g � φ ! ∂Ωi a ∂ΩN �p ŷi � ψ ! Ωi / φ � ψ � Y h  (3.17)

If we insert (3.10) without the SUPG terms, (3.17) yields

0 � s

∑
i D 1

�
Ωi

ε∇yi � x �(� ∇φ � x ��� a � x �(� ∇yi � x � φ � x ��� r � x � yi � x � φ � x � dx� 1
2

�
∂Ωi b ∂Ω

a � x ��� ni yi � x � φ � x � dx � �
Ωi

f � x � φ � x �(� ui � x � φ � x � dx � �
∂Ωi a ∂ΩN

g � x � φ � x � dx �
0 � s

∑
i D 1

�
Ωi

ε∇ψ � x ��� ∇pi � x ��� a � x �(� ∇ψ � x � pi � x ��� r � x � ψ � x � pi � x � dx� 1
2

�
∂Ωi b ∂Ω

a � x ��� ni pi � x � ψ � x � dx � �
Ωi

�q�y � x �(� yi � x ��� ψ � x � dx
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for all φ � ψ � Y h. Integration by parts finally leads to

0 � s

∑
i D 1

�
Ωi

�O� ε∆yi � x ��� a � x ��� ∇yi � x ��� r � x � yi � x ��� f � x ��� ui � x �4� φ � x � dx� �
∂Ωi b ∂Ω

� ε ∂
∂ni

� 1
2a � x ��� ni � yi � x � φ � x � dx � �

∂Ωi a ∂ΩN

� ε ∂
∂ni

yi � x �(� g � x ��� φ � x � dx �
(3.18a)

0 � s

∑
i D 1

�
Ωi

�O� ε∆pi � x ��� a � x �(� ∇pi � x ���p� r � x ��� ∇ � a � x �4� pi � x ���r�y � x ��� yi � x ��� ψ � x � dx� �
∂Ωi b ∂Ω

� ε ∂
∂ni

� 1
2a � x ��� ni � pi � x � ψ � x � dx � �

∂Ωi a ∂ΩN

ε
∂

∂ni
pi � x � ψ � x � dx (3.18b)

for all φ � ψ � Y h. Since yi � ui � pi satisfy (3.14), equations (3.18) reduce to

0 � s

∑
i D 1

�
∂Ωi b ∂Ω

� ε ∂
∂ni

� 1
2a � x �(� ni � yi � x � φ � x � dx / φ � Y h �

0 � s

∑
i D 1

�
∂Ωi b ∂Ω

� ε ∂
∂ni

� 1
2a � x �(� ni � pi � x � ψ � x � dx / ψ � Y h 

This leads to (3.16).

Remark 3.3 We briefly comment on the subproblems that would arise if we had used the
unmodified local bilinear forms ai % h � yh � φh �	� _ai � yh � ψh � instead of (3.10).

i. If ai % h � yh � φh ��� _ai � yh � ψh � , the systems (3.11), i � 1 ���4O� s, can still be interpreted as
the finite element discretization of (3.14) which, in turn, can be viewed as the optimality
conditions for (3.15).

iii. If ai % h � yh � φh �	� _ai � yh � ψh � , the interface condition (3.12) can be interpreted as

ε ∂
∂ni

yi � x �f� � ε ∂
∂n j

y j � x � x � ∂Ωi E ∂Ω j �J ε ∂
∂ni
� a � x � ni M pi � x �f� � J ε ∂

∂n j
� a � x � n j M p j � x � x � ∂Ωi E ∂Ω j � (3.19)

for i � j � 1 �4��4� s, i N� j.

3.3 Schur Complement Formulation

As we have stated earlier, we will view the solution of (3.11) as an affine linear function of� yΓ � pΓ � and then consider (3.12) as a linear equation in � yΓ � pΓ � . The variational formula-
tion of this process is studied here. It complements Section 4, but is not required for the
reading of Section 4.
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For i � 1 ����O� s, we define the linear operators

H h
i : Y h

Γ � Y h
Γ h Y h

i � Uh
i � Y h

i (3.20a)

with

H h
i � yΓ � pΓ �	�tsu � H h

i � y � yΓ � pΓ �� H h
i � u � yΓ � pΓ �� H h
i � p � yΓ � pΓ �

vw �tsu y0
i

u0
i

p0
i

vw � (3.20b)

where � y0
i � u0

i � p0
i � is the solution of (3.11) with f � 0, g � 0 and ŷ � 0.

Let   O�x���y! ! denote the duality pairing between � Y h
Γ � 2 and �4� Y h

Γ ��z{� 2. We define the linear
subdomain Schur complement operator

S h
i : � Y h

Γ � 2 h ��� Y h
Γ � z � 2 � (3.21a)

i � 1 �4��4� s, with  S h
i � yΓ � pΓ ���{� vΓ � qΓ ��! !� ai % h ��� H h

i � y � yΓ � pΓ ���{� H h
i � p � vΓ � qΓ ����� bi % h ��� H h

i � u � yΓ � pΓ ���{� H h
i � p � vΓ � qΓ �4�� ai % h �4� H h

i � y � vΓ � qΓ ���{� H h
i � p � yΓ � pΓ ����S �� H h

i � y � yΓ � pΓ ���{� H h
i � y � vΓ � qΓ ��! Ωi  (3.21b)

The definition of H h
i implies that

α  �� H h
i � u � yΓ � pΓ �g� µi ! Ωi � bi % h � µi �{� H h

i � p � yΓ � pΓ ���	� 0 / µi � Uh
i

(cf., (3.11b)) and, hence, we can write  S h
i � yΓ � pΓ ���{� vΓ � qΓ ��! !� ai % h ��� H h

i � y � yΓ � pΓ ���{� H h
i � p � vΓ � qΓ ����� bi % h ��� H h

i � u � yΓ � pΓ ���{� H h
i � p � vΓ � qΓ �4�� bi % h �4� H h

i � u � vΓ � qΓ ���{� H h
i � p � yΓ � pΓ �4��� α  �� H h

i � u � yΓ � pΓ �g�{� H h
i � u � vΓ � qΓ ��! Ωi� ai % h �4� H h

i � y � vΓ � qΓ ���{� H h
i � p � yΓ � pΓ ����S �� H h

i � y � yΓ � pΓ ���{� H h
i � y � vΓ � qΓ ��! Ωi  (3.21c)

We define ri �|�4� Y h
Γ � z � 2, i � 1 �4��4� s, as  ri �{� vΓ � qΓ ��! !�  f �{� H h
i � p � vΓ � qΓ ��! Ωi % h �. g �{� H h

i � p � vΓ � qΓ ��! ∂Ωi a ∂ΩN �p ŷi �{� H h
i � y � vΓ � qΓ ��! Ωi� ai % h � yi �{� H h

i � p � vΓ � qΓ �4��� bi % h � ui �{� H h
i � p � vΓ � qΓ ���� ai % h �4� H h

i � y � vΓ � qΓ ��� pi ���= yi �{� H h
i � y � vΓ � qΓ ��! Ωi � (3.22)

where � yi � ui � pi � is the solution of (3.11) with yΓ � 0 and pΓ � 0.
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Theorem 3.1 with R s
h � vΓ � qΓ � &Ωi �}� H h

i � y � vΓ � qΓ � and R a
h � vΓ � qΓ � &Ωi �~� H h

i � p � vΓ � qΓ �
implies that the system (3.7) of optimality conditions is equivalent to the Schur complement
system

s

∑
i D 1

S h
i � yΓ � pΓ �	� s

∑
i D 1

ri in ��� Y h
Γ � z � 2  (3.23)

The next result establishes the invertibility of the subdomain Schur complement opera-
tor Si.

Theorem 3.4 Let ri �;� ry
i � rp

i ������� Y h
i % Γi
�4zg� 2.

i. If (2.3a)–(2.3c) hold and if the stabilization parameter τe is sufficiently small, then
the unique solution � yΓ � pΓ ����� Y h

i % Γi
� 2 of

Si � yΓ � pΓ �	� ri (3.24)

is given by
yΓ � yi

&
Γi � pΓ � pi

&
Γi �

where � yi � ui � pi ��� Y h
i � Uh

i � Y h
i is the unique solution of

ai % h � ψ � pi ���. yi � ψ ! Ωi �# ry
i � ψ ! Γi / ψ � Y h

i � (3.25a)

bi % h � µ � pi ��� α  ui � µ ! Ωi � 0 / µ � Uh
i � (3.25b)

ai % h � yi � ψ ��� bi % h � ui � ψ �	�# rp
i � ψ ! Γi / ψ � Y h

i  (3.25c)

ii. If the relative interior of ∂Ωi E ∂ΩD is nonempty, then the assumption (2.3c) in part
i. can be replaced by (2.3d).

The proof of this theorem is very similar to its counterpart in [20]. The inclusion of the
advection as well as the SUPG stabilization, however, require a few subtle modifications.
For completeness, we include the poof.

Proof: By definition (3.21) of Si, the equality (3.24) can be written as

ai % h ��� H h
i � y � yΓ � pΓ ���{� H h

i � p � vΓ � qΓ ����� bi % h ��� H h
i � u � yΓ � pΓ ���{� H h

i � p � vΓ � qΓ �4�� ai % h �4� H h
i � y � vΓ � qΓ ���{� H h

i � p � yΓ � pΓ �����. �� H h
i � y � yΓ � pΓ ���{� H h

i � y � vΓ � qΓ �4! Ωi�  ry
i � vΓ ! Γi �. rp

i � qΓ ! Γi (3.26)

for all vΓ � qΓ � Y h
i % Γi

. Using the definition (3.20) of Hi � yΓ � pΓ � together with (3.26), we see
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that (3.24) is equivalent to

ai % h ��� H h
i � y � yΓ � pΓ ����� H h

i � p � vΓ � qΓ ���� bi % h ��� H h
i � u � yΓ � pΓ ����� H h

i � p � vΓ � qΓ ���� ai % h ��� H h
i � y � vΓ � qΓ ���{� H h

i � p � yΓ � pΓ ����: �� H h
i � y � yΓ � pΓ ���{� H h

i � y � vΓ � qΓ ��! Ωi �; ry
i � vΓ ! Γi �. rp

i � qΓ ! Γi / vΓ � qΓ � Y h
i % Γi
� (3.27a)

ai % h � ψ0 � pi ���. yi � ψ0 ! Ωi � 0 / ψ0 � Y h
i % 0 � (3.27b)

bi % h � µ � pi ��� α  ui � µ ! Ωi � 0 / µ � Uh
i � (3.27c)

ai % h � yi � φ0 ��� bi % h � ui � φ0 �	� 0 / φ0 � Y h
i % 0 � (3.27d)

yi � yΓ � pi � pΓ on Γ � (3.27e)

If we set ψ � ψ0 �6� H h
i � y � yΓ � pΓ �d� Y h

i and φ � φ0 �6� H h
i � p � yΓ � pΓ ��� Y h

i , then (3.27) is
equivalent to

ai % h � ψ � pi ���p yi � ψ ! Ωi �# ry
i � ψ ! Γi � / ψ � Y h

i � (3.28a)

bi % h � µ � pi ��� α  ui � µ ! Ωi � 0 / µ � Uh
i � (3.28b)

ai % h � yi � φ ��� bi % h � ui � φ �<�# rp
i � φ ! Γi / φ � Y h

i � (3.28c)
yi � yΓ � pi � pΓ on Γ � (3.28d)

The assertion follows if we prove that (3.25) has a unique solution � yi � ui � pi �?�
Y h

i � Uh
i � Y h

i . Let � y1
i � u1

i � p1
i ���{� y2

i � u2
i � p2

i �k� Y h
i � Uh

i � Y h
i be solutions of (3.25). Then� ey

i � eu
i � ep

i �<�#� y1
i � y2

i � u1
i � u2

i � p1
i � p2

i ��� Y h
i � Uh

i � Y h
i satisfies

ai % h � ψ � ep
i ���. ey

i � ψ ! Ωi � 0 / ψ � Y h
i � (3.29a)

bi % h � µ � ep
i ��� α  eu

i � µ ! Ωi � 0 / µ � Uh
i � (3.29b)

ai % h � ey
i � φ ��� bi % h � eu

i � φ �<� 0 / φ � Y h
i  (3.29c)

If we set ψ � ey
i , µ � eu

i , and φ ��� ep
i in (3.29) and add the resulting equations, we obtain

0 �)$ ey
i $ 20 %Ωi

� α $ eu
i $ 20 %Ωi


Hence ey

i � 0 and eu
i � 0. Now, consider (3.29a) with ψ � ep

i . Using the definitions (3.9)
and (3.10) and the assumptions (2.3a), (2.3b), (2.3d) we have

0 � ai % h � ep
i � ep

i �1� �
Ωi

ε∇ep
i � x �(� ∇ep

i � x ���.� r � x �(� 1
2 ∇ � a � x ���`� ep

i � x ��� 2dx� 1
2

�
∂Ωi a ∂ΩN

a � x �(� ni � ep
i � x ��� 2dx �� ∑

Te ^ Ωi

τe  O� ε∆ep
i � a � ∇ep

i � rep
i � a � ∇ep

i ! Te7 ε
&
∇ep

i
&
1 %Ωi � r0 $ ep

i $ 0 %Ωi� ∑
Te ^ Ωi

τe  O� ε∆ep
i � a � ∇ep

i � rep
i � a � ∇ep

i ! Te 
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(Note that the modification of the local bilinear from (3.9) was used to derive the previous
inequality.) Standard SUPG estimates (cf. [25, p. 378] or [34, L. 3.28,p. 231]) show that

0 � ai % h � ep
i � ep

i ��7 ε
2
&
∇ep

i
&
1 %Ωi � r0

2
$ ep

i $ 0 %Ωi � 1
2 ∑

Te ^ Ωi

τe $ a � ∇ep
i $ 0 % Te �

for sufficiently small τe. This implies ep
i � 0.

ii. By the same arguments as those applied in part i., we can show ey
i � 0 and eu

i � 0. By
a Poincaré inequality, we have $ ep

i $ 0 %Ωi � c
&
∇ep

i
&
1 %Ωi . Hence we can modify the estimates

above to show that

0 � ai % h � ep
i � ep

i �7 ε
&
∇ep

i
&
1 %Ωi � ∑

Te ^ Ωi

τe  O� ε∆ep
i � a � ∇ep

i � rep
i � a � ∇ep

i ! Te �7 ε
2
&
∇ep

i
&
1 %Ωi � ε

2c
$ ep

i $ 0 %Ωi � ∑
Te ^ Ωi

τe  O� ε∆ep
i � a � ∇ep

i � rep
i � a � ∇ep

i ! Te7 ε
4
&
∇ep

i
&
1 %Ωi � ε

4c
$ ep

i $ 0 %Ωi � 1
2 ∑

Te ^ Ωi

τe $ a � ∇ep
i $ 0 % Te

for sufficiently small τe. This implies ep
i � 0. �

Remark 3.5 i. Equations (3.25) can be interpreted as the weak form of� ε∆yi � x ��� a � x ��� ∇yi � x ��� r � x � yi � x �	� ui � x � in Ωi � (3.30a)
yi � x �	� 0 on ∂Ωi E ∂ΩD � (3.30b)

ε
∂

∂ni
yi � x �	� 0 on ∂Ωi E ∂ΩN � (3.30c)

m ε
∂

∂ni
� 1

2 a � x �(� ni n yi � x �	� ry
i � x � on Γi � (3.30d)� ε∆pi � x ��� a � x ��� ∇pi � x ���.� r � x �(� ∇ � a � x ��� pi � x �	��� yi � x � in Ωi � (3.30e)

pi � x �	� 0 � on ∂Ωi E ∂ΩD � (3.30f)

ε
∂

∂ni
pi � x ��� a � x ��� n � x � pi � x �	� 0 on ∂Ωi E ∂ΩN � (3.30g)

m ε
∂

∂ni
� 1

2 a � x ��� ni n pi � x �	� rp
i � x � on Γi � (3.30h)

αui � x ��� pi � x �	� 0 on ∂Ω E ∂Ωi  (3.30i)

The terms 1
2 a � x ��� ni in (3.30d,h) arise because of the modification (3.9) in the local bilinear

form ai % h.
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ii. The system (3.30) may be viewed as the necessary and sufficient optimality condi-
tions for

minimize 1
2

�
Ωi

y2
i � x � dx � α

2

�
Ωi

u2
i � x � dx � �

Γi

yi � x � rp
i � x � dx � (3.31a)

subject to� ε∆yi � x ��� a � x �(� ∇yi � x ��� r � x � yi � x �	� ui � x � in Ωi � (3.31b)
yi � x �	� 0 on ∂Ωi E ∂ΩD � (3.31c)

ε
∂

∂n
yi � x �	� 0 � on ∂Ωi E ∂ΩN � (3.31d)

m ε
∂

∂ni
� 1

2a � x �(� ni n yi � x �	� ry
i � x � on Γi � (3.31e)

Remark 3.6 If the unmodified local bilinear forms ai % h � yh � φh ��� _ai � yh � ψh � were used in-
stead of (3.10), the invertibility of Si can no longer be guaranteed in general.

However, if ai % h � yh � φh ��� _ai � yh � ψh � , and if Si is invertible, then the application of its
inverse corresponds to� ε∆yi � x ��� a � x ��� ∇yi � x ��� r � x � yi � x �	� ui � x � in Ωi � (3.32a)

yi � x �	� 0 � on ∂Ωi E ∂ΩD � (3.32b)

ε
∂

∂ni
yi � x �	� 0 on ∂Ωi E ∂ΩN � (3.32c)

ε
∂

∂ni
yi � x �	� ry

i � x � on Γi � (3.32d)� ε∆pi � x ��� a � x ��� ∇pi � x ���.� r � x �(� ∇ � a � x ��� pi � x �	��� yi � x � in Ωi � (3.32e)
pi � x �	� 0 on ∂Ωi E ∂ΩD � (3.32f)

ε
∂

∂ni
pi � x ��� a � x ��� n � x � pi � x �	� 0 on ∂Ωi E ∂ΩN � (3.32g)

m ε
∂

∂ni
� a � x �(� ni n pi � x �	� rp

i � x � on Γi � (3.32h)

αui � x ��� pi � x �	� 0 on ∂Ω E ∂Ωi  (3.32i)

4 Algebraic Formulation

In this section we present the matrix view of the domain decomposition Schur complement
formulation introduced in the previous section. Much of this section is very similar to [20].
We include the material here to make this paper selfcontained, but also to be better able to
comment on the role of the choice of the local bilinear form (3.9) (see Theorem 4.2 and
Remark 4.3 below).
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For our model problem the matrices and vectors A ���4 are given as follows. Let 5 x j 9 nv
j D 1

be the set of vertices of the triangulation 5 Tl 9 and let 5 φ j 9 m
j D 1 be the piecewise linear nodal

basis for Y h defined in (3.1). Furthermore, let 5 µi
j 9 ni

j D 1 be the the piecewise linear nodal
basis for Uh

i defined (3.3), where ni is the number of vertices in Ωi. We identify µi
j with a

function in L2 � Ω � by extending µi
j by zero outside Ωi. We set

µ1 � µ1
1 ����O� µni � µ1

n1 � µn1 � 1 � µ2
1 ����O� µn1 � n2 � µ2

n2 ���44
Then n � ∑s

i D 1 ni and

A jk � ah � φk � φ j ��� Q jk �# φk � φ j !�� c j ���B ŷ � φ j !�� b j �� f � φ j ! h �. g � φ j ! ∂ΩN

for j � k � 1 ���44� m, and
B jk � bh � µk � φ j ��� R jk �; µk � µ j !

for j � k � 1 ���44� n.

The discretized optimal control problem (3.6) is equivalent to a large-scale linear
quadratic problem of the form

minimize
1
2

yT Qy � cT y � α
2

uT Ru � (4.1a)

subject to Ay � Bu � b  (4.1b)

For the model problem, the matrices Q � R are mass matrices and are symmetric positive
definite. The stiffness matrix A is non-symmetric, but, under the assumptions (2.3) and
with sufficiently small stabilization parameter τe (cf. [25, p. 378] or [34, L. 3.28,p. 231]),
the matrix obeys yT Ay � 0 for all y N� 0. In particular under these conditions A is invertible.
The necessary and sufficient optimality conditions for (4.1) are given by

su Q 0 AT

0 αR BT

A B 0

vw su y
u
p

vw ��su � c
0
b

vw  (4.2)

The system matrix in (4.2) is symmetric indefinite and has m � n positive eigenvalues and
m negative eigenvalues [14].

4.1 Domain Decomposition Schur Complement Formulation

We can use the decomposition of Ω to decompose the matrices A, etc. Let the local
(bi)linear forms ai % h ���� , be defined as in Section 3.2. In the following, we let x j denote
the vertices in the triangulation.

For i � 1 �4��F� s, we define the submatrices Ai
II � � mi

I � mi
I , Ai

ΓI � � mi
Γ � mi

I , Ai
IΓ � � mi

I � mi
Γ ,

and Ai
ΓΓ � � mi

Γ � mi
Γ , where mi

I is the number of nodes in Ωi C�� ∂ΩN E ∂Ωi � and mi
Γ is the
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number of nodes in Γi, as follows. Let ik be the global node number of the kth node in
Ωi CZ� ∂ΩN E ∂Ωi � and let γk be the global node number of the kth node in Γi. We set� Ai

II � jk � ai % h � φik � φi j �g� xi j � xik � Ωi CZ� ∂ΩN E ∂Ωi ���� Ai
IΓ � jk � ai % h � φγk � φi j �g� xi j � Ωi CZ� ∂ΩN E ∂Ωi ��� xγk � Γi �� Ai
ΓI � jk � ai % h � φik � φγ j �g� xγ j � Γi � xik � Ωi CZ� ∂ΩN E ∂Ωi ���� Ai
ΓΓ � jk � ai % h � φγk � φγ j �g� xγ j � xγk � Γi �

and AΓΓ � ∑s
i D 1 ��� yi � T Ai

ΓΓ � yi , where � y
i is the restriction operator which maps from the vector

of coefficient unknowns on the interface boundary Γ, to only those associated with the
interface boundary Γi of the ith subdomain. Note that the modification (3.9) of the local
bilinear form ai % h only changes Ai

ΓΓ. After a suitable reordering of rows and columns, the
stiffness matrix can be written as

A � s���u A1
II A1

IΓ
. . . ...

As
II As

IΓ
A1

ΓI ����� As
ΓI AΓΓ

vi���w  (4.3)

Similar decompositions can be introduced for Q and c, as well as y � p.

For i � 1 ��4�O� s, we define the submatrices Bi
II � � mi

I � ni
and Bi

ΓI � � mi
Γ � ni

, where, as
before, mi

I is the number of nodes in Ωi C�� ∂ΩN E ∂Ωi � , mi
Γ is the number of nodes in Γi,

and ni is the number of nodes in Ωi, as follows. Let ik be the global node number of the kth
node in Ωi CW� ∂ΩN E ∂Ωi � , let γk be the global node number of the kth node in Γi, and let βk
be the global node number of the kth control node in Ωi.� Bi

II � jk � bi % h � µβk
� φi j ��� xi j � Ωi CZ� ∂ΩN E ∂Ωi ��� xk � Ωi� Bi

ΓI � jk � bi % h � µβk � φγ j ��� xγ j � Γi � xβk � Ωi 
After a suitable reordering of rows and columns, the matrix B can be written as

B � s���u B1
II

. . .
Bs

II
B1

ΓI ����� Bs
ΓI

vi���w 
Note that in our particular control discretization, all basis functions µi

k for the discretised
control uh have support in only one subdomain Ωi (see the right plot in Figure 3.1). Con-
sequently, there are no Bi

IΓ ���44� Bi
ΓΓ. The matrix R and the vector u can be decomposed

analogously. Note that there is no uΓ.
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We can now insert the domain decomposition structure of the matrices A � Q � B � R into
(4.2). After a symmetric permutation, (4.2) can be written as

s���u K1
II � K1

ΓI � T
. . . ...

Ks
II � Ks

ΓI � T
K1

ΓI ���4� Ks
ΓI KΓΓ

v ���w s���u x1
I
...

xd
I

xΓ

v ���w � s���u g1
I
...

gd
I

gΓ

v ���w � (4.4)

where

Ki
ΓΓ � m Qi

ΓΓ � Ai
ΓΓ � T

Ai
ΓΓ

n � i � 1 ����F� s � KΓΓ � s

∑
i D 1

Ki
ΓΓ �

Ki
II � su Qi

II 0 � Ai
II � T

0 αRi
II � Bi

II � T
Ai

II Bi
II

vw � Ki
ΓI � m Qi

ΓI 0 � Ai
IΓ � T

Ai
ΓI Bi

ΓI
n 

Furthermore,

xΓ � m yΓ
pΓ

n � gΓ � m cΓ
bΓ

n � xi
I �tsu yi

I
ui

I
pi

I

vw � gi
I �tsu ci

I
di

I
bi

I

vw 
Frequently, we use the compact notation

m KII KT
ΓI

KΓI KΓΓ
n m xI

xΓ
n � m gI

gΓ
n � (4.5)

or even Kx � g instead of (4.4).

Assuming that KII is invertible (we will present conditions that guarantee the invert-
ibility in Theorem 4.2 below), we can form the Schur complement system

SxΓ � r (4.6)

corresponding to (4.4), where

S � KΓΓ � KΓIK � 1
II KT

ΓI (4.7)

and
r � gΓ � KΓIK � 1

II gI 
Due to the block structure of KΓI and KII, the Schur complement S can be written as a sum
of subdomain Schur complements. In fact, let � y

i , i � 1 ����O� d, be the restriction operator
which maps from the vector of coefficient unknowns on the interface boundary, yΓ, to only
those associated with the boundary of Ωi, and let� i � m � y

i � p
i
n � � p

i �P� yi  (4.8)
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The Schur complement can be written as

S � s

∑
i D 1
� T

i Si � i � (4.9)

where
Si � Ki

ΓΓ � Ki
ΓI � Ki

II � � 1 � Ki
ΓI � T � i � 1 ����O� s  (4.10)

Similarly,

r � s

∑
i D 1
� T

i ri �
where ri � gi

Γ � Ki
ΓI � Ki

II �{� 1gi
I, i � 1 ���44� s.

Observe that
Si � HT

i KiHi � (4.11)

where

Hi � m �?� Ki
II ��� 1Ki

IΓ
I n (4.12)

and

Ki � m Ki
II � Ki

ΓI � T
Ki

ΓI Ki
ΓΓ

n 
The matrix Hi defined in (4.12) is the matrix representation of the operator H h

i defined in
(3.20). The representation (4.11) corresponds to the representation (3.21c) of the subdo-
main Schur complement operator S h

i .

The matrix Ki plays an important role for the computation of the inverse of Si (assuming
it exists), which will be used in Section 4.2 to precondition S. In fact, if Ki

II is invertible,

Ki � m I 0
Ki

ΓI � Ki
II ��� 1 I n m Ki

II 0
0 Si

n m I � Ki
II ��� 1 � Ki

ΓI � T
0 I n (4.13)

and Si is invertible if and only if Ki is invertible. In this case,

S � 1
i r �#� 0 I ��� Ki � � 1 m 0

I n r (4.14)

(see, e.g., [38, p. 113]). The previous formula is the algebraic version of Theorem 3.4.

We conclude this subsection with a result concerning the invertibility of the subma-
trices Ki

II, which is important for the computation of Si, and with the invertibility of the
submatrices Ki, which is important for the computation of � Si � � 1. We set

Ai � m Ai
II Ai

IΓ
Ai

ΓI Ai
ΓΓ
n 

Matrices Qi � Ri are defined analogously.

Before we state our result on the invertibility of Ki
II and Ki, we recall the following

theorem, which is proven, e.g., in [14].
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Theorem 4.1 Let A � � m � m � B � � m � n be arbitrary matrices and let Q � � m � m � R � � n � n

be symmetric. If
range � A &

B �	� � m (4.15)

and if m z
v n T m Q 0

0 αR n m z
v n � 0 (4.16)

for all z � � m � v � � n with Az � Bv � 0 and � zT � vT ��N� 0, thensu Q 0 AT

0 αR BT

A B 0

vw
has m � n positive eigenvalues and m negative eigenvalues.

Theorem 4.2 i. The matrices Qi
II � Ri

II are symmetric positive definite. If (2.3a), (2.3b),
(2.3d) hold, and if the stabilization parameter τe is sufficiently small, the matrix Ai

II obeys
vT Ai

IIv � 0 for all v N� 0 and Ki
II is invertible.

ii. The matrices Qi � Ri are symmetric positive definite. If (2.3a)–(2.3c) hold and if the
stabilization parameter τe is sufficiently small, the matrix Ai obeys vT Aiv � 0 for all v N� 0
and Ki is invertible.

iii. If (2.3a), (2.3b), (2.3d) hold, if the relative interior of ∂Ωi E ∂ΩD is nonempty, and
if the stabilization parameter τe is sufficiently small, the matrix Ai obeys vT Aiv � 0 for all
v N� 0 and Ki is invertible.

Proof: i. Using the definitions (3.9) and (3.10) and the assumptions (2.3a), (2.3b), (2.3d)
we have

ai % h � vh � vh �1� �
Ωi

ε∇vh � x ��� ∇vh � x ���p� r � x ��� 1
2 ∇ � a � x ��� v2

h � x � dx� 1
2

�
∂Ωi a ∂ΩN

a � x ��� ni v2
h � x � dx �� ∑

Te ^ Ωi

τe  O� ε∆vh � a � ∇vh � rvh � a � ∇vh ! Te7 ε
&
∇vh

&
1 %Ωi � r0 $ vh $ 0 %Ωi� ∑

Te ^ Ωi

τe  O� ε∆vh � a � ∇vh � rvh � a � ∇vh ! Te

for all vh � Y h
i % 0. (Note that for vh � Y h

i % 0 we have ai % h � vh � vh �8� _ai % h � vh � vh � , i.e., the modifi-
cation of the local bilinear from (3.9) is not important here.) Standard SUPG estimates (cf.
[25, p. 378] or [34, L. 3.28,p. 231]) show that

ai % h � vh � vh ��7 ε
2
&
∇vh

&
1 %Ωi � r0

2
$ vh $ 0 %Ωi � 1

2 ∑
Te ^ Ωi

τe $ a � ∇vh $ 0 % Te
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for all vh � Y h
i % 0. By a Poincaré inequality, we have $ vh $ 0 %Ωi � c

&
∇vh

&
1 %Ωi . Hence,

vT Ai
IIv � ai % h � vh � vh ��7 ε

2
&
∇vh

&
1 %Ωi � r0

2
$ vh $ 0 %Ωi � 1

2 ∑
Te ^ Ωi

τe $ a � ∇vh $ 0 % Te � 0

for all v N� 0. In particular Ai
II is invertible and (4.15) with A, B, m replaced by Ai

II, Bi
II ,

mi
I , respectively, is valid. Moreover, the matrices Qi

II � � mi
I � mi

I Ri
II � � ni � ni

are subdomain
mass matrices, which implies their symmetric positive definiteness. Hence (4.16) with
Q � R replaced by Qi

II � Ri
II is valid for all z � � mi

I � v � � ni
with � zT � vT ��N� 0. The result now

follows from Theorem 4.1.

ii. We proceed as in the first part. Using the definitions (3.9) and (3.10) and the as-
sumptions (2.3a) – (2.3c) we have

ai % h � vh � vh ��7 ε
&
∇vh

&
1 %Ωi � r0 $ vh $ 0 %Ωi� ∑

Te ^ Ωi

τe  O� ε∆vh � a � ∇vh � rvh � a � ∇vh ! Te

for all vh � Y h
i . (Note that for vh � Y h

i we have ai % h � vh � vh ��N� _ai % h � vh � vh � , in general, and the
modification of the local bilinear from (3.9) is needed to ensure the previous inequality.)
Again, standard SUPG estimates (cf. [25, p. 378] or [34, L. 3.28,p. 231]) show that

ai % h � vh � vh ��7 ε
2
&
∇vh

&
1 %Ωi � r0

2
$ vh $ 0 %Ωi � 1

2 ∑
Te ^ Ωi

τe $ a � ∇vh $ 0 % Te

for all vh � Y h
i and we obtain vT Aiv � 0 for all v N� 0 as in part i. We can now proceed as

in part i. to prove the invertibility of Ki.

iii. If the relative interior of ∂Ωi E ∂ΩD is nonempty, then due to a Poincaré inequality
there exists a constant c � 0 such that $ vh $ 0 %Ωi � c

&
∇vh

&
1 %Ωi for all vh � Y h

i and we can
admit r0 � 0 in part ii. �
Remark 4.3 i. Examination of the proof of Theorem 4.2 reveals the importance of the

modification (3.9) of the local bilinear form to guarantee ai % h � vh � vh ��� 0 for all vh �
Y h

i � vh N� 0, i.e., vT Aiv � 0 for all v N� 0.

ii. Just to guarantee the invertibility of Ki, the conditions in Theorem 4.2ii, iii. may be
too strong.

For our model problem with distributed control, Bi � � mi � ni
, with ni � mi, is related

to the mass matrix and satisfies rank � Bi ��� � mi
. Hence, (4.15) is satisfied. (The
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invertibility of Ai is not needed.) Moreover, Qi � Ri are subdomain mass matrices,
and, hence,

m z
v n T m Qi 0

0 αRi n m z
v n � 0 for all z � � mi � v � � ni

with � zT � vT ��N� 0 
This means that for our model problem with distributed control, the invertibility of
Ai is not needed to ensure the invertibility of Ki! In particular, Ki is also invertible
if we use the local bilinear form (3.8) instead of (3.9).

4.2 The Robin-Robin Preconditioners

It is now relatively easy to generalize the Robin-Robin preconditioner used in the context
of advection dominated elliptic PDEs [4] to the optimal control context.

Let Dy
i be the diagonal matrix, whose entries are computed as follows. If the node xk

satisfies xk � Γi, then � Dy
i � � 1

kk is the number of subdomains that share node xk. Note that
∑i Dy

i � I. Furthermore, let D̃p
i � D̃y

i and

Di � m Dy
i

Dp
i
n 

By Theorem 4.2 i. Si, i � 1 ����O� s, is well defined. The one-level Robin-Robin precondi-
tioner is given by

P � ∑
i

Di � T
i S � 1

i � iDi  (4.17)

In principle it is possible to incorporate a coarse space, but this has not yet been been
explored in the optimal control context.

4.3 Implementation

Instead of working on the preconditioned Schur complement system

PSxΓ � P � gΓ � KΓIK � 1
II gI �	� Pr  (4.18)

we work on the preconditioned full system. It is easy to verify that

m KII KT
ΓI

KΓI KΓΓ
n � m KII 0

KΓI P � 1 n� �i� �D�� PK
l ��� 1

m I 0
0 PS n m I K � 1

II KT
ΓI

0 I n� �i� �D	� PK
r � � 1

 (4.19)

We will look at the preconditioned system

PK
l KPK

r �x � PK
l g � (4.20)
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where �x �H� PK
r �{� 1x, and at the preconditioned Schur compement system (4.18). Consider

an initial iterate

x0 � m x0
I

x0
Γ
n � (4.21)

with
x0

I � K � 1
II � gI � KT

ΓIx
0
Γ � (4.22)

and set �x0 ��� PK
r � � 1x0. The corresponding preconditioned residual satisfies

�r0 � PK
l � g � KPK

r � �x0 � m 0
P � gΓ � KΓIK � 1

II gI � Sx0
Γ � n � m 0�r0

Γ
n  (4.23)

We see that the second component of the initial residual �r0 of the preconditioned system
(4.20) is the initial residual �r0

Γ � P � gΓ � KΓIK � 1
II gI � Sx0

Γ � of the preconditioned Schur
complement system (4.18).

Recall that for a matrix A and a vector v, the Krylov subspace is defined by Kk � A � v �	�
span 5 v � Av ��4��� Ak � 1v 9 . Using the fact that the first component of �r0 is zero and that PK

l KPK
r

is a block diagonal matrix, we immediately obtain the following relation between the
Krylov subspaces of the preconditioned system (4.20) and the preconditioned Schur com-
plement system (4.18):

Kk � PK
l KPK

r � �r0 �	� 5 0 9k� Kk � PS � �r0
Γ � / k  (4.24)

This relationship allows one to establish relationships between Krylov subspace methods
applied to the preconditioned preconditioned Schur compement system (4.18) and the pre-
conditioned full system (4.20), provided that the initial iterates satisfy (4.22). For the
symmetric positive definite case see [24]. If the application of K � 1

II is exact, there is no
difference between the solution of preconditioned Schur complement system (4.18) and
the preconditioned full system (4.20). However, the latter provides advantages if the ap-
plication of K � 1

II is performed inexactly using iterative methods [24, 18]. In our numerical
examples, we solve systems of the form Ki

IIv
i
I � ri

I and Kivi � ri (the latter arising in the
application of our preconditioner, cf. (4.14)) exactly (up to floating point arithmetic) using
UMFPACK 4.3 [9]. Still, we work with the the preconditioned full system (4.20) to allow
the incorporation of iterative solvers in the future.

In our numerical experiments reported on in the next section, we use GMRES [35] and
sQMR [11, 12]. applied to

PK
r PK

l Kx � PK
r PK

l g  (4.25)

We have observed that the number of GMRES [sQMR] iterations applied to (4.20) is close
to the number of GMRES [sQMR] iterations applied to (4.25). In both cases GMRES
[sQMR] was stopped if the respective preconditioned residual was reduced by a factor
of 10 � 9. However, we also observed that the error between the solution computed us-
ing GMRES and the exact solution K � 1g was for small diffusion ε significantly smaller
when left preconditioning (4.25) was used instead of split preconditioning (4.20). This
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is not surprising, since the GMRES iteration is stopped when the preconditioned residual$ PK
r PK

l Kx � PK
r PK

l g $ or $ PK
l Kx � PK

l g $ , respectively, is small and the matrix PK
r PK

l K is
expected to have a smaller condition number than PK

l K. The error between the solution
computed using sQMR applied to (4.25) and the exact solution K � 1g was observed to be
also smaller than the error between the solution computed using sQMR applied to (4.20)
and the exact solution K � 1g, but the differences were much smaller than those observed
for GMRES.

5 Numerical Results

In this section we illustrate the performance of our optimization-level domain decompo-
sition method for several advection dominated optimal control problems with distributed
controls or with boundary controls.

To explore the importance of the modification (3.9) of the local bilinear form, we run
experiments with and without this modification. If we use the modified local bilinear form
(3.9), then we refer to the resulting preconditioner as a Robin–Robin (R–R) preconditioner.
This name is motivated by the Robin transmission conditions (3.16) for the state (and the
adjoint) and the Robin boundary conditions for the state (and the adjoint) in the subprob-
lem (3.30) for the inversion of Si. If ai � yh � φh �d� _ai � yh � φh � , i.e., no modification of the
local bilinear form is applied, then we refer to the resulting preconditioner as a Neumann–
Neumann (N–N) preconditioner. This name is motivated by the Neumann transmission
conditions (3.19) for the state and the Neumann boundary conditions for the state in the
subproblem (3.32) for the inversion of Si.

5.1 Distributed Control

5.1.1 Influence of Different Velocity Fields

This example is derived from Example 4.1 in [4]. We use Ω ��� 0 � 1 �	��� 0 � 0  2 � , ∂ΩD � ∂Ω,
r � 1, f � 0, and one of the following four advections a � x ��� e1, a � x ��� e2, a � x �k�� 1 [�� 2 �`� e1 � e2 � , or a � x ��� 2π �4� x1 � 0  5 � e2 �p� x2 � 0  1 � e1 � . These are refered to as ‘nor-
mal’, ‘parallel’, ‘oblique’, and ‘rotating’, respectively. We generate ŷ as the solution of

� ε∆ŷ � x ��� a � x ��� ∇ŷ � x ��� ŷ � x �	� 5e ��  x1 � 0 ¡ 2 ¢ 2 £   x2 � 0 ¡ 1 ¢ 2
2 ¤ 0 ¡ 12 � 5e ��  x1 � 0 ¡ 8 ¢ 2 £   x2 � 0 ¡ 1 ¢ 2

2 ¤ 0 ¡ 12 � x � Ω �
(5.1a)

ŷ � x �	� 0 � x � ∂Ω 
(5.1b)

We decompose Ω into 5 subdomains of size � 0 � 0  2 ����� 0 � 0  2 � . Each subdomain is triangu-
lated by dividing each axis into 30 subintervals and subsequently subdividing the resulting
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rectangles into two triangles. The problems are solved by a preconditioned sQMR algo-
rithm where the stopping criterion is to reduce the initial residual by a factor of 10 � 9. We
use either Robin–Robin (R–R) or Neumann–Neumann (N–N) preconditioning.

Unlike in the PDE-only case in [4], the unpreconditioned sQMR (the same is true
for GMRES) fails to reduce the initial residual to the specified tolerance within 1000 it-
erations for all experiments outlined below. Therefore, we do not give any further numer-
ical results in absence of preconditioning. In Tables 5.1 and 5.2 we report the number of
preconditioned sQMR iterations for the values α � 10 � 4 and α � 1 of the regularization
parameter, respectively.

We recall (cf. Remark 4.3) that for the distribruted control case the invertibility of Ai,
i.e., the modification (3.9) of the bilinear form is not needed to ensure invertibility of Ki

and, hence Si. Thus the application of the Neumann–Neumann (N–N) preconditioner is
well–posed for the distributed control case.

ε Prec. � Velocity Normal Parallel Oblique Rotating
0  001 R-R 12 3 13 9

N-N 21 3 18 13
1 R-R 4 4 4 4

N-N 4 4 4 4

Table 5.1. sQMR iterations for different velocity fields and fixed
regularization parameter α ¥ 10 ¦ 4.

ε Prec. � Velocity Normal Parallel Oblique Rotating
0  001 R-R 12 3 4 6

N-N 53 3 30 14
1 R-R 4 4 4 4

N-N 4 4 4 4

Table 5.2. sQMR iterations for different velocity fields and fixed
regularization parameter α ¥ 1.

Tables 5.1 and 5.2 show that for large ε, both Robin–Robin and Neumann–Neumann
preconditioners perform equally well, with all sQMR runs finishing in 4 iterations. This
is in agreement with the PDE-only case reported in [4, Table 1]. When the velocity is
parallel to subdomain interfaces, then ai � yh � φh ��� _ai � yh � φh � and the Robin–Robin and the
Neumann-Neumann are identical. The Robin–Robin preconditioner adapts nicely to small
ε for all velocities. The performance of the Neumann–Neumann preconditioner deteriorates
with decreasing ε, but this deterioration is not nearly as pronounced as in the PDE-only case
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in [4, Table 1]. Finally, we observe that the size of the regularization parameter α seems to
affect the performance of both preconditioners only moderately. This observation is further
examined in Example 5.1.2.

5.1.2 Influence of the Number of Subdomains, Grid Sizes, and Regularization

The purpose of this example is to assess the sensitivity of the Robin–Robin and Neumann–
Neumann preconditioners to increases in the number of subdomains and grid points.

We use Ω �~� 0 � 1 ���r� 0 � 1 � , ∂ΩD � ∂Ω, ε � 0  001, a � x ��� 3e1 r � 1, and f � 0. We
generate ŷ as in Example 5.1.1 but with a minor modification in the second term in the right
hand side. Specifically, ŷ is computed as the solution of� ε∆ŷ � x ��� a � x ��� ∇ŷ � x ��� ŷ � x �	� 5e ��  x1 � 0 ¡ 2 ¢ 2 £   x2 � 0 ¡ 1 ¢ 2

2 ¤ 0 ¡ 12 � 5e ��  x1 � 0 ¡ 8 ¢ 2 £   x2 � 0 ¡ 9 ¢ 2
2 ¤ 0 ¡ 12 � x � Ω �

(5.2a)

ŷ � x �	� 0 � x � ∂Ω 
(5.2b)

For the first experiment we use a fixed uniform grid of size 128 � 128 (note that each
square in the mesh is divided into two triangles). The grid is partitioned in various ways.
First, we use 4, 8, and 16 vertical rectangular strips of equal size (yielding subdomain
sizes of 32 � 128, 16 � 128, and 8 � 128, respectively). Second, we partition the grid
into 2 � 2, 4 � 4, 8 � 8, and 16 � 16 square subdomains (with sudomain sizes of 64 � 64,
32 � 32, 16 � 16, and 8 � 8 respectively). Finally, the grid is subdivided into 16 horizontal
rectangular strips of equal size (yielding a subdomain size of 128 � 8). The results are
presented in Table 5.3.

Table 5.3 shows that for large α, the number of sQMR iterations roughly doubles as the
number of subdomains in x1-direction doubles, for both preconditioners. This is also ob-
served in [4, Table 2]. The Robin–Robin preconditioner performs better than the Neumann-
Neumann preconditioner. For large α the performance differences are as pronounced as in
the PDE-only case reported in [4].

For small α, the number of sQMR iterations does not increase significantly as the num-
ber of subdomains is increased (regardless of the position of subdomain interfaces). This
is a surprising and not yet understood result, which unfortunately does not hold true for
most other problem setups with complex velocity fields (see the following examples). The
Neumann–Neumann preconditioner performs much better here than in the case of large α.

For partitions in which all subdomain interfaces are parallel to the velocity field, i.e.,
1 � 4, 1 � 8, and 1 � 16 partitions, the number of sQMR iterations is not affected at all by
the number of subdomains or the size of the regularization parameter. Both Robin–Robin
and Neumann–Neumann preconditioned sQMR runs complete all tests in only 3 iterations
(the 1 � 4 and 1 � 8 results are not tabulated).
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Reg. Prec. � Part. 4 � 1 8 � 1 16 � 1 1 � 16
α � 10 � 4 R-R 12 12 14 3

N-N 39 39 38 3
α � 1 R-R 9 19 38 3

N-N 130 361 � 500 3

Reg. Prec. � Part. 2 � 2 4 � 4 8 � 8 16 � 16
α � 10 � 4 R-R 13 15 17 21

N-N 35 44 46 49
α � 1 R-R 7 14 24 47

N-N 87 172 452 � 500

Table 5.3. sQMR iterations for varying numbers of subdomains
and fixed diffusivity ε ¥ 0 § 001.

The second experiment examines the influence of the number of grid points. The prob-
lem is set up as in the first experiment, except that here we fix two particular subdomain
partitions, and vary the grid size. We use either an 8 � 1 rectangular subdomain partition
or a 4 � 4 square subdomain partition, on uniform grids of sizes 32 � 32, 64 � 64, and
128 � 128 (again, each mesh square is split into two triangular elements). The results are
presented in Table 5.4.

They indicate that the convergence of the sQMR algorithm with the Robin–Robin pre-
conditioner is not affected by the grid size. This agrees with the results stated in [4, Table 5].
On the other hand, the performance of the Neumann-Neumann preconditioned algorithm
deteriorates slightly as the number of grid points is increased. The size of the regulariza-
tion parameter α does not affect the performance of the Robin–Robin preconditioner. In
contrast, for large α the Neumann-Neumann preconditioner performs extremely poorly for
all grid sizes.
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8 � 1 Partition
Reg. Prec. � Grid Size 32 � 32 64 � 64 128 � 128
α � 10 � 4 R-R 15 12 12

N-N 21 27 39
α � 1 R-R 21 19 19

N-N 307 368 361

4 � 4 Partition
Reg. Prec. � Grid Size 32 � 32 64 � 64 128 � 128
α � 10 � 4 R-R 16 16 15

N-N 28 33 44
α � 1 R-R 16 15 14

N-N 143 156 172

Table 5.4. sQMR iterations for varying numbers of grid points
and fixed diffusivity ε ¥ 0 § 001.
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5.2 Source Inversion

This example is motivated by the desire to identify the source of a hazardous material from
measurements of the concentration at sensor locations xs

1 ��4�O� xs
Ns

. The problem is modeled
as

minimize
1
2

Ns

∑
j D 1
� y � xs

j �����y j � 2dx � α
2

R � u � (5.3a)

subject to � ε∆y � x ��� a � x �(� ∇y � x �<� u � x �g� x � Ω � (5.3b)
y � x ��� 0 � x � ∂ΩD � (5.3c)

ε
∂

∂n
y � x ��� 0 � x � ∂ΩN  (5.3d)

Here xs
1 ��4�4� xs

Ns
are the sensor locations, u represents the unknown source, y represents the

concentration, and �y j are the concentration measurements at the sensor locations. In (5.3a),
the term R � u � represents a regularization term. We use

R � u �<� �
Ω

u2 � x � dx � or R � u �<� �
Ω

∇u � x �(� ∇u � x � dx 
It is not our intention to examine this example from an inverse problem point of view
([5, 40]), i.e., study the quality of the source estimate u obtained from (5.3), the choice of
the regularization term R or the regularization parameter α. We focus on the solution of
(5.3) for given α � 0 and R. Since we use pointwise observations in (5.3a) and may only
include a seminorm regularization, " Ω ∇u � x ��� ∇u � x � dx, the existence and uniqueness result
in Theorem 2.1 does not apply here and we proceed formally.

The problem domain Ω is sketched in Figure 5.1 and represents the cross section of a
two-story building.

35342210 45
y0
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11

y

x
0 2311 83 1059594827170605550

2

3

9

8

Figure 5.1. Problem geometry, vent placement. (All measure-
ments are in meters, not to scale).

The advection a in (5.3a) is obtained is obtained from a rough model of the air flow
generated by an HVAC (heating-venting-air-conditioning) system. Air is blown into or out

38



of the building through vents, with locations indicated in Figure 5.1. Vents at the ceiling of
the second story of the building (vents with y-coordinate y � 11) are outflow vents; air is
blown into the building through all other vents. We use the Stokes equation to model the air
flow in the building. Since our focus is on the performance of the domain decomposition
preconditioner on (5.3), this model is sufficient for our pusposes. For more realistic models
for indoor flows see, e.g., [27, 26, 33] and the references therein.

Our advection a is computed as the solution a � v of� ρµ∆v � ∇p � 0 � in Ω (5.4a)
∇ � v � 0 � in Ω (5.4b)

v �>� vinn � on Γin (5.4c)
v � voutn � on Γout % 1 (5.4d)

ρµ∇vn � pn � 0 � on Γout % 2 (5.4e)
v � 0 � on ∂Ω � 5 Γin C Γout % 1 C Γout % 2 9¨ (5.4f)

The six small vents in the ceiling of the second floor indicated in Figure 5.1 describe the out-
flow boundary Γout % 1. The outflow boundary Γout % 1 is given by the opening � 50 � 55 ��� 5 11 9
in the ceiling of the second floor. The remaining sixteen vents form the inflow boundary
Γin. As before, n denotes the unit outward normal. To generate the flow field a � v we
use the following data. The density coefficient is ρ � 1  25 
 kg [ m3 � , and the viscosity is
µ � 1  8 � 10 � 5. The inflow air speed is vin � 0  1 
m [ sec � for all inlets, and the outflow
air speed vout � 0  2 
m [ sec � for the six smaller outlet vents. We use Taylor Hood finite
elements to solve (5.4). The computed flow field for a mesh with 4492 nodes and 8324
triangles is depicted in Figure 5.2.

0 10 20 30 40 50 60 70 80 90 100
0
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10

x

y

Figure 5.2. The HVAC flow.

For the source inversion problem (5.3), all inlets are subject to homogeneous Dirich-
let boundary conditions, and all outlets and walls are assigned homogeneous Neumann
boundary conditions. Thus the boundary segments in (5.3) and (5.4) are related as follows:
∂ΩN � ∂Ω � Γin, ∂ΩD � Γin. The sensors are distributed ‘uniformly’ throughout the mesh,
and are placed at the node locations, which eliminates the need for interpolation of their
positions relative to the mesh nodes. This sensor placement is done for computational con-
venience, but is not necessary. For illustrational purposes, a sample mesh with about 1000
nodes and 100 sensors is presented in Figure 5.3.
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Figure 5.3. A sample finite-element mesh and sensor locations.

We generate sensor measurements by solving (5.3b–d) using a given right hand side

u � x �<� 5exp m � � x1 � 25 � 2 �.� x2 � 2 � 2
2 � 0  72 n � 5exp m � � x1 � 90 � 2 �p� x2 � 8 � 2

2 � 0  72 n
i.e., two Gaussian sources of equal magnitude, one on each floor, in different locations.

Since a � v solves (5.4) and r � 0, we have r � x ��� 1
2∇ � a � x �8� 0 a.e. in Ω. Moreover

since homogeneous Neumann boundary conditions are assigned at all outlets and at walls,
ΩN � ∂Ω � Γin, the boundary conditions (5.4d,f) imply that a � n 7 0 on � ∂Ω � 5 Γin C Γout % 1 9 .
On Γout % 2 the computed velocity obeys a � n 7 0 (see also Figure 5.2).

We generate meshes using Triangle [37] and partition meshes using METIS [23]. For
partitions into 16 or 32 subdomains, some subdomains do not contain inlet vents, i.e.,
do not contain boundary segments with Dirichlet boundary conditions. In these cases,
Theorem 4.2ii,iii. cannot be applied to justify the invertibility of Ki corresponding to the
subdomains that do not contain boundary segments with Dirichlet boundary conditions.
Numerically, however, the solution of linear systems with Ki, which is needed to apply
S � 1

i (cf. (4.13)), did not pose problems. We conjecture that because of reasons similar to
Remark 4.3 these Ki’s are invertible.

For the first two experiments we choose a triangulation with 983 nodes, 1642 triangles,
and 351 uniformly distributed sensors. The first experiment assesses the sensitivity of the
Robin–Robin preconditioner with respect to decreasing diffusion coefficients. We use a
regularization parameter of α � 10 � 5, 8 subdomains, and a relative residual stopping toler-
ance for sQMR of 10 � 9. The results are depicted in Figure 5.4. We note that, as expected,
the number of iterations increases only moderately as the problem becomes advection dom-
inated (and thus much harder to solve). The second experiment assesses the robustness of
the Robin–Robin preconditioner with respect to different regularization parameters. Here,
the diffusion is set to ε � 5 � 10 � 4, and the remaining problem parameters are as in the
first experiment. From Figure 5.5 we observe that the regularization parameter has virtu-
ally no effect on the number of sQMR iterations. This agrees with a previous result for
nonadvective quadratic elliptic problems [19].

The third experiment shows the influence of the number of subdomains and the number
of grid points on Robin–Robin and Neumann-Neumann preconditioners. As in the first
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Figure 5.4. Influence of the diffusion ε on the R–R prec., for a
fixed regularization α ¥ 10 ¦ 5.

two experiments, we use 351 uniformly distributed sensors. The diffusion is ε � 5 � 10 � 4,
the regularization is α � 10 � 5, and the relative residual stopping tolerance is 10 � 9. We
observe from Table 5.5 that for the Robin–Robin preconditioner the number of sQMR
iterations is only mildly affected by the number of grid points, with no clear dependence
between them. On the other hand, the number of iterations roughly doubles as the number
of subdomains doubles. The Neumann-Neumann preconditioner shows similar dependence
on the number of subdomains. Additionally, its performance is negatively affected by an
increasing number of grid points.

Robin–Robin Neumann–Neumann
SDs � Elems 1642 3352 8319 32814 1642 3352 8319 32814
2 32 34 52 30 34 73 152 117
4 48 74 94 91 77 176 403 � 1000
8 70 157 136 178 89 360 999 � 1000
16 278 358 171 288 359 509 951 � 1000
32 498 674 679 461 595 865 � 1000 � 1000
System Size © 3000 6000 13500 51000 3000 6000 13500 51000

Table 5.5. Influence of the number of subdomains and elements
on the number of sQMR iterations; α ¥ 10 ¦ 5, ε ¥ 5 ª 10 ¦ 4.

Finally, we rerun all tests from the third experiment using GMRES instead of sQMR.
Detailed results are presented in Table 5.6. We observe that GMRES requires fewer iter-
ations than sQMR. It appears that the dependence on the number of subdomains for the
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Figure 5.5. Influence of the regularization α on the R–R prec.,
for a fixed diffusion ε ¥ 5 ª 10 ¦ 4.

Robin–Robin preconditioner is not nearly as pronounced as in the sQMR case. On the
other hand, its mesh independence is clearly confirmed in the GMRES experiment. The
Neumann-Neumann preconditioner performs better than in the sQMR runs, however, it
remains dependent both on the number of subdomains and the mesh size.

Robin–Robin Neumann–Neumann
SDs � Elems 1642 3352 8319 32814 1642 3352 8319 32814
2 20 28 40 20 21 34 46 42
4 29 43 61 41 37 56 85 80
8 35 64 73 70 42 78 117 151
16 76 81 70 75 84 100 131 204
32 117 116 115 95 134 157 244 245
System Size © 3000 6000 13500 51000 3000 6000 13500 51000

Table 5.6. Influence of the number of subdomains and elements
on the number of GMRES iterations; α ¥ 10 ¦ 5, ε ¥ 5 ª 10 ¦ 4.
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5.3 Robin Boundary Control

The domain decomposition method described in the previous section for optimal control
problems with distributed control can be extended to problems with boundary control using
the ideas in [20]. We report on some numerical results for the example problem

minimize
1
2

�
Ω
� y � x �(���y � x ��� 2dx � α

2

�
∂Ωc

u2 � x � dx (5.5a)

subject to � ε∆y � x ��� a � x �(� ∇y � x ��� r � x � y � x �<� f � x ��� x � Ω � (5.5b)
y � x �	� 0 � x � ∂ΩD � (5.5c)

ε
∂

∂n
y � x ��� δy � x �	� δu � x ��� x � ∂Ωc (5.5d)

where r � 1, f � 0, and δ � 103. The Robin boundary condition (5.5d) can be viewed as a
penalized Dirichlet condition [6, 21].

The first experiment is set up as in Example 5.1.1. We examine the performance of
the Robin–Robin and Neumann-Neumann preconditioners with respect to various velocity
fields, on the rectangular domain Ω �~� 0 � 1 �8�«� 0 � 0  2 � with five square subdomains. We
choose ∂Ωc � ∂Ω, i.e. ∂ΩD � /0. In Tables 5.7 and 5.8 we report the number of precondi-
tioned sQMR iterations for the values α � 10 � 4 and α � 1, respectively.

ε Prec. � Velocity Normal Parallel Oblique Rotating
0  001 R-R 16 3 9 9

N-N 129 3 36 17
1 R-R 4 4 4 4

N-N 4 4 4 4

Table 5.7. sQMR iterations for different velocity fields and fixed
regularization parameter α ¥ 10 ¦ 4.

The obtained results are similar to those of Example 5.1.1, with one important differ-
ence. For small ε, the Neumann-Neumann preconditioner performs significantly worse
when compared to the distributed control case. This behavior can be explained by re-
examining Remark 4.3. The boundary control problem lacks the property rank � Bi �	� � mi

.
Therefore, the invertibility of Ai is now needed to ensure the invertibility of Ki. Within the
Neumann-Neumann preconditioner (i.e., no modification of the local bilinear form ai), we
have observed severely ill-conditioned Ki’s in some subdomains (with estimated condition
numbers of 106).

43



ε Prec. � Velocity Normal Parallel Oblique Rotating
0  001 R-R 7 3 3 6

N-N 73 3 29 15
1 R-R 4 4 4 4

N-N 4 4 4 4

Table 5.8. sQMR iterations for different velocity fields and fixed
regularization parameter α ¥ 1.

The second experiment assesses the sensitivity of the Robin–Robin and Neumann–
Neumann preconditioners to increases in the number of subdomains. We use the same setup
as in Example 5.1.2, i.e. the square domain Ω �~� 0 � 1 ����� 0 � 1 � with various partitioning
schemes. As before, the velocity is a � x ��� 3e1 and ε � 0  001. The results are presented in
Table 5.9.

Reg. Prec. � Part. 4 � 1 8 � 1 16 � 1 1 � 16
α � 10 � 4 R-R 17 37 78 4

N-N � 500 � 500 � 500 4
α � 1 R-R 7 14 28 3

N-N 142 218 340 3

Reg. Prec. � Part. 2 � 2 4 � 4 8 � 8 16 � 16
α � 10 � 4 R-R 9 20 42 82

N-N 151 � 500 � 500 � 500
α � 1 R-R 5 11 19 36

N-N 83 163 260 420

Table 5.9. sQMR iterations for varying numbers of subdomains
and fixed diffusivity ε ¥ 0 § 001.

There are several major differences compared to the distributed control case. For the
Robin–Robin preconditioner, the number of sQMR iterations roughly doubles as the num-
ber of subdomains in the x1-direction doubles, regardless of the size of the regulariza-
tion parameter α (i.e. small α does not yield partition independence). The failure of the
Neumann-Neumann preconditioning scheme is evident. The preconditioned sQMR algo-
rithm fails to achieve the desired relative residual within 500 iterations for six test cases.
This result reinforces our conjecture from the previous experiment. When the regulariza-
tion parameter is increased from α � 10 � 4 to α � 1, the number of Robin–Robin precondi-
tioned sQMR iterations is roughly reduced by a factor of two for all test cases. This result
is more intuitive than the one in the distributed control example.

44



The third experiment examines the influence of the number of grid points. The problem
is set up as in Example 5.1.2, where we fix two particular subdomain partitions (8 � 1 and
4 � 4), and vary the grid size. The results are presented in Table 5.10.

8 � 1 Partition
Reg. Prec. � Grid Size 32 � 32 64 � 64 128 � 128
α � 10 � 4 R-R 38 36 37

N-N � 500 � 500 � 500
α � 1 R-R 14 14 14

N-N 224 219 220

4 � 4 Partition
Reg. Prec. � Grid Size 32 � 32 64 � 64 128 � 128
α � 10 � 4 R-R 21 20 20

N-N � 500 � 500 � 500
α � 1 R-R 12 12 11

N-N 147 167 158

Table 5.10. sQMR iterations for varying numbers of grid points
and fixed diffusivity ε ¥ 0 § 001.

The results indicate that the convergence of the sQMR algorithm with the Robin–Robin
preconditioner is mesh independent. This agrees with the observations made in the dis-
tributed control case. It is difficult to draw any conclusions about the performance of the
Neumann-Neumann preconditioner as a function of the increasing number of grid points,
since it performs quite poorly even for large α, and entirely fails to reach the desired relative
residual for small α.
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5.4 Solid/Fluid Temperature Control

Our last example is a simple solid/fluid temperature control problem motivated by [17]. The
domain Ω �#� 0 � 1 � 2 is split into the subdomain Ω f �#� 0 � 1 ���¬� 0 � 0  75 � occupied by a fluid,
and the subdomain Ωs ��� 0 � 1 ���:� 0  75 � 1 � occupied by a solid. All length measurements are
in meters. The velocity of the fluid is assumed to be a � x ���� 1  5x2 � 2x2

2 � 0 � T 
m [ sec � . We
want to control the temperature y at the inflow boundary ∂Ωc � 5 0 9l��� 0 � 0  75 � to achieve
a uniform temperature profile inside the solid. The boundary control problem is given by

minimize
1
2

�
Ωs

� y � x �����y � x ��� 2dx � α
2

�
∂Ωc

u2 � x � dx (5.6a)

subject to � ε f ∆y � x ��� a � x ��� ∇y � x �<� 0 � x � Ω f � (5.6b)� εs∆y � x �	� f � x � Ωs � (5.6c)

ε
∂

∂n
y � x �	� 0 � x � ∂Ω � ∂Ωc � (5.6d)

y � x �	� d � x ��� u � x �g� x � ∂Ωc � (5.6e)

where ε f � 0  6 
W [o� m � C �F� is the thermal conductivity of the fluid (water), εs �
237 
W [o� m � C �F� is the thermal conductivity of the solid (aluminum), ε stands for either ε f
or εs, f � 1  2 � 104 
W [ m3 � is the volumetric heat energy added to the solid, �y � x �-� 90 
y� C �
is the desired temperature of the solid, d � x �d� 70 
�� C � is a constant temperature on the
control boundary ∂Ωc representing the inflow temperature of the fluid for the uncontrolled
(forward) problem, and α � 10 � 4 is a regularization parameter.

Figure 5.6 depicts the problem geometry along with the described velocity field. The
domain is partitioned into 4 � 4 �4®®x� 32 � 32 equal sized subdomains such that each subdo-
main is either a subset of the fluid or the solid region. The weighting Di in our precon-
ditioner is not modified to account for the different thermal conductivities. This could be
easily done following [13]. However, the reported iteration numbers below are not signif-
icantly different from those observed when ε f � εs � 1 and therefore a modification of Di
has not been pursued in this example.

The presence of Dirichlet boundary controls requires a few changes in the discretization
of the problem and its decomposition. These will be sketched in the following subsection.

5.4.1 Problem Discretization and Decomposition

We discretize (5.6) using conforming linear finite elements. Let 5 Tl 9 be a triangulation
of Ω. The state y is approximated using piecewise linear functions. The discretized state
space is

Y h � * φh � H1 � Ω � : φh
&
Tl � P1 � Tl � for all l , 
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Figure 5.6. Velocity field and the control boundary (bold vertical
line).

For the Dirichlet boundary control problem (5.6) the control space is U � H1 � ∂Ωc � [17]
and not U � L2 � ∂Ωc � (as in the case of Robin boundary controls). Our controls are now
discretized using piecewise linear functions which are continuous on ∂Ωc. The space of
discretized controls is

Uh � * µh � H1 � ∂Ωc � : µh
&
∂Tl a ∂Ωc � P1 � ∂Tl E ∂Ωc � for all l , 

To simplify the presentation of the discretized problem, we assume that the vertices
x1 ����F� xm of the triangulation are ordered such that the first n vertices lie on the controlled
boundary ∂Ωc. Let φ1 ����O� φm be the piecewise linear nodal basis for Y h and let µ1 ����F� µn be
the piecewise linear nodal basis for U h. In the following δ jk denotes the Kronecker delta.
If we define

A jk � ah � φk � φ j �g� b j �# f � φ j ! h � j � n � 1 �4��F� m � k � 1 �4��F� m �
A jk � δ jk � b j � 0 � j � 1 ����O� n � k � 1 �4��4� m �

B jk � δ jk � j � 1 ����O� m � k � 1 ����O� n �
Q jk �¯ φk � φ j ! , j � k � 1 �4��F� m, c j �°�? ŷ � φ j ! , j � 1 ���44� m, and R jk �¯ µk � µ j ! L2 � ∂Ωc � � µ ±k � µ ± j ! L2 � ∂Ωc � , then our discretization of (5.6) is given by (4.1).

To decompose the problem, we again divide Ω into nonoverlapping subdomains Ωi,
i � 1 ��4�4� s, such that each Tl belongs to exactly one Ωi. We define Γi to be the interface
between Ωi and the other subdomains,

Γi � ∂Ωi E �²C j cD i∂Ω j ���
47



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

Subdomains (4 × 4 partition)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

x 2

Figure 5.7. Decomposition of Ω into 4 ª 4 subdomains.

and Γ �;C s
i D 1Γi. As before, the unit outward normal of Ωi is denoted by ni. A sample

decomposition into 4 � 4 subdomains is shown in Figure 5.7.

The state space Y h is is decomposed into Y h � Y h
Γ CZ�²C s

i D 1Y h
i % 0 � , where

Y h
i � * φh � H1 � Ωi � : φh

&
Tl � P1 � Tl � for all Tl

� Ωi , � i � 1 ����O� s �
Y h

i % 0 �)G φh � Y h
i : φh � 0 on Γi I � i � 1 ����O� s �

Y h
i % Γi
� Y h

i � Y h
i % 0 � i � 1 ����O� s �

and
Y h

Γ � Y h �KJLC s
i D 1Y h

i % 0 M �
where in the latter case, Y h

i % 0 is viewed as a subspace of Y h by extending vi � Y h
i % 0 by zero

onto Ω. We split the space of discretized controls U h � Uh
Γ CZ�²C s

i D 1Uh
i % 0 � , where

Uh
i � * µh � H1 � ∂Ωi E ∂Ωc � : µh

&
∂Tl a ∂Ωc � P1 � ∂Tl E ∂Ωc � for all Tl

� Ωi , � i � 1 ����O� s �
Uh

i % 0 � G µh � Uh
i : µh � 0 on Γi I � i � 1 ����O� s �

Uh
i % Γi
� Uh

i � Uh
i % 0 � i � 1 ����O� s �

and Uh
Γ � Uh � J C s

i D 1Uh
i % 0 M . Here Uh

i % 0 is viewed as a subspace of U h by extending ui � Uh
i % 0

by zero onto ∂Ωc. Note that Uh
i � /0 for subdomains Ωi with ∂Ωi E ∂Ωc � /0.

We split the subdomains into no-control subdomains

N � 5 i : ∂Ωi E ∂Ωc � /0 9
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and control subdomains
C � 5 i : ∂Ωi E ∂Ωc N� /0 9�

For i � 1 �4��F� s, we define the submatrices Ai
II � � mi

I � mi
I , Ai

ΓI � � mi
Γ � mi

I , Ai
IΓ � � mi

I � mi
Γ ,

and Ai
ΓΓ � � mi

Γ � mi
Γ , where mi

I is the number of nodes in Ωi � Γi and mi
Γ is the number of

nodes in Γi, as follows. Let ik be the global node number of the kth node in Ωi � Γi and let
γk be the global node number of the kth node in Γi. We set� Ai

II � jk � ai % h � φik � φi j �g� xi j � Ωi ��� Γi C ∂Ωc �g� xik � Ωi � Γi �� Ai
IΓ � jk � ai % h � φγk � φi j �g� xi j � Ωi ��� Γi C ∂Ωc ��� xγk � Γi �� Ai
ΓI � jk � ai % h � φik � φγ j �g� xγ j � Γi � ∂Ωc � xik � Ωi � Γi �� Ai
ΓΓ � jk � ai % h � φγk � φγ j �g� xγ j � Γi � ∂Ωc � xγk � Γi �� Ai
II � jk � δ jk � xi j �|� Ωi E ∂Ωc ��� Γi � xik � Ωi � Γi �� Ai
IΓ � jk � 0 � xi j �|� Ωi E ∂Ωc ��� Γi � xγk � Γi �� Ai
ΓI � jk � 0 � xγ j � Γi E ∂Ωc � xik � Ωi � Γi �� Ai
ΓΓ � jk � 1

2δ jk � xγ j � Γi E ∂Ωc E l cD i Γl � xγk � Γi �� Ai
ΓΓ � jk � δ jk � xγ j ��� Γi E ∂Ωc ����� E l cD iΓl ��� xγk � Γi 

The 1
2 δ jk is used because in our problem set-up each point xγ j � Γi E ∂Ωc E l cD i Γl is shared

by two subdomains. Moreover, we set AΓΓ � ∑s
i D 1 ��� yi � T Ai

ΓΓ � y
i , where � y

i is the restriction
operator which maps from the vector of coefficient unknowns on the interface boundary Γ,
to only those associated with the interface boundary Γi of the ith subdomain. As before,
after a suitable reordering of rows and columns, the stiffness matrix can be written as (4.3).
The vector b is decomposed analogously to A.

For i � 1 �4��4� s, we define the submatrices Qi
II � � mi

I � mi
I , Qi

ΓI � � mi
Γ � mi

I , and Qi
ΓΓ �� mi

Γ � mi
Γ , as follows.� Qi

II � jk �# φik � φi j !g� xi j � xik � Ωi � Γi �� Qi
IΓ � jk �#� Qi

ΓI � k j �# φγk � φi j !�� xi j � Ωi � Γi � xγk � Γi �� Qi
ΓΓ � jk �# φγk � φγ j !g� xγ j � xγk � Γi

and QΓΓ � ∑s
i D 1 �q� y

i � T Qi
ΓΓ � yi . With this decomposition, Q can be written in the form (4.3).

The vector c is decomposed analogously to Q.

The matrices B � R associated with the controls are decomposed as follows. For i � C ,
we define the submatrices Bi

II � � ni
I � mi

I , Bi
ΓI � � ni

Γ � mi
I , and Bi

ΓΓ � � ni
Γ � mi

Γ , where ni
I is the

number of nodes in � ∂Ωi E ∂Ωc ��� Γi and ni
Γ is the number of nodes in Γi E ∂Ωc, as follows.

As before, we let ik be the global node number of the kth node in Ωi � Γi and let γk be the
global node number of the kth node in Γi. To simplify our presentation we assume that the
first ni

I nodes with global index i1 ����O� ini
I

lie on the controlled boundary � ∂Ωi E ∂Ωc �³� Γi and
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that the first ni
Γ nodes with global index γ1 ��4�4� γni

Γ
lie on the controlled boundary Γi E ∂Ωa.

We set � Bi
II � jk � 0 � xi j � Ωi ��� Γi C ∂Ωc �g� xik �|� ∂Ωi E ∂Ωc ��� Γi �� Bi
IΓ � jk � 0 � xi j � Ωi ��� Γi C ∂Ωc �g� xγk � Γi E ∂Ωc �� Bi
ΓI � jk � 0 � xγ j � Γi � ∂Ωc � xik �|� ∂Ωi E ∂Ωc ��� Γi �� Bi
ΓΓ � jk � 0 � xγ j � Γi � ∂Ωc � xγk � Γi E ∂Ωc �� Bi
II � jk � δ jk � xi j ��� Ωi E ∂Ωc ��� Γi � xik �|� ∂Ωi E ∂Ωc ��� Γi �� Bi
IΓ � jk � 0 � xi j �|� Ωi E ∂Ωc ��� Γi � xγk � Γi E ∂Ωc �� Bi
ΓI � jk � 0 � xγ j � Γi E ∂Ωc � xik �|� ∂Ωi E ∂Ωc ��� Γi �� Bi
ΓΓ � jk � 1

2δ jk � xγ j � Γi E ∂Ωc E l cD i Γl � xγk � Γi E ∂Ωc �� Bi
ΓΓ � jk � δ jk � xγ j �|� Γi E ∂Ωc ����� E l cD iΓl �g� xγk � Γi E ∂Ωc 

Moreover, we set BΓΓ � ∑s
i D 1 �q� ui � T Bi

ΓΓ � u
i , where � u

i is the restriction operator which maps
from the vector of coefficient unknowns on the interface control boundary Γ E ∂Ωc, to only
those associated with the interface control boundary Γi E ∂Ωc of the ith subdomain.

For i � C , we define the submatrices Ri
II � � ni

I � ni
I , Ri

ΓI �#� Ri
ΓI � T � � ni

Γ � ni
I , and Ri

ΓΓ �� ni
Γ � ni

Γ with� Ri
II � jk �# µik � µi j ! L2 � ∂Ωi a ∂Ωc � �. µ ±ik � µ ±i j

! L2 � ∂Ωi a ∂Ωc � � xi j � xik �«� ∂Ωi E ∂Ωc ��� Γi �� Ri
IΓ � jk �# µγk � µi j ! L2 � ∂Ωi a ∂Ωc � �. µ ±γk

� µ ±i j
! L2 � ∂Ωi a ∂Ωc � � xi j �|� ∂Ωi E ∂Ωc ��� Γi � xγk � Γi E ∂Ωc �� Ri

ΓΓ � jk �# µγk � µγ j ! L2 � ∂Ωi a ∂Ωc � �. µ ±γk
� µ ±γ j

! L2 � ∂Ωi a ∂Ωc � � xγ j � xγk � Γi E ∂Ωc

and RΓΓ � ∑s
i D 1 �q� ui � T Ri

ΓΓ � u
i . With this decomposition, R can be written in the form (4.3).

We can now insert the domain decomposition structure of the matrices A � Q � B � R into
the system of optimality conditions (4.2) for our discretization of (5.6) and perform a sym-
metric permutation. We obtain

s���u K1
II � K1

ΓI � T
. . . ...

Ks
II � Ks

ΓI � T
K1

ΓI ���4� Ks
ΓI KΓΓ

vi���w s���u x1
I
...

xd
I

xΓ

vi���w � s���u g1
I
...

gd
I

gΓ

vi���w �
where

Ki
ΓΓ �tsu Qi

ΓΓ � Ai
ΓΓ � T

αRi
ΓΓ � Bi

ΓΓ � T
Ai

ΓΓ Bi
ΓΓ

vw � i � 1 ����F� s � KΓΓ � s

∑
i D 1

Ki
ΓΓ �

Ki
II � su Qi

II � Ai
II � T

αRi
II � Bi

II � T
Ai

II Bi
II

vw � Ki
ΓI � su Qi

ΓI � Ai
IΓ � T

αRi
ΓI � Bi

IΓ � T
Ai

ΓI Bi
ΓI

vw � i � C
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and

Ki
II � m Qi

II � Ai
II � T

Ai
II

n � Ki
ΓI � m Qi

ΓI � Ai
IΓ � T

Ai
ΓI

n � i � N 
Furthermore,

xΓ � su yΓ
uΓ
pΓ

vw � gΓ � su � cΓ
0

bΓ

vw �
and

xi
I � su yi

I
ui

I
pi

I

vw � gi
I � su � ci

I
0
bi

I

vw � i � C � xi
I � m yi

I
pi

I
n � gi

I � m ci
I

bi
I
n � i � N 

For subdomains Ωi with i � N the operator equation Si � yΓ � pΓ ��� ri now corresponds
to (cf. Theorem 3.4 and Remark 3.5)� ε∆yi � x ��� a � x ��� ∇yi � x �	� f � x � in Ωi � (5.7a)

ε
∂

∂ni
yi � x �	� 0 � on ∂Ωi E ∂Ω � (5.7b)

m ε
∂

∂ni
� 1

2a � x ��� ni n yi � x �	� ry
i � x � on Γi � (5.7c)� ε∆pi � x ��� a � x ��� ∇pi � x �	�>�?� yi � x ��� ŷ � x ��� in Ωi � (5.7d)

ε
∂

∂ni
pi � x ��� a � x �(� n � x � pi � x �	� 0 � on ∂Ωi E ∂Ω � (5.7e)

m ε
∂

∂ni
� 1

2a � x �(� ni n pi � x �	� rp
i � x � on Γi � (5.7f)

with ε � εs, a � 0 if Ωi
� Ωs and ε � ε f , f � 0 if Ωi

� Ω f . Note that in our example r � 0
and ∇ � a � 0. The bilinear forms ai � yh � φh � (cf. (3.9)) corresponding to these advection
problems only satisfy ai � y � y ��7 c

&
y
& 2
1 %Ωi

and the weak forms corresponding to (5.7) are not
uniquely solvable. This is the same issue that arises in Neumann-Neumann precondition-
ers for the Laplace equation [10, 38, 39] and boundary control problems governed by the
Laplace equation [20]. Motivated by these works, we consider the perturbations� ε∆yi � x ��� a � x ��� ∇yi � x ��� ε

H2 yi � x �	� f � x � in Ωi � (5.8a)

ε
∂

∂ni
yi � x �	� 0 � on ∂Ωi E ∂Ω � (5.8b)

m ε
∂

∂ni
� 1

2a � x ��� ni n yi � x �	� ry
i � x � on Γi � (5.8c)� ε∆pi � x �(� a � x �(� ∇pi � x ��� ε

H2 pi � x �	���?� yi � x �(� ŷ � x �4� in Ωi � (5.8d)

ε
∂

∂ni
pi � x ��� a � x ��� n � x � pi � x �	� 0 � on ∂Ωi E ∂Ω � (5.8e)

m ε
∂

∂ni
� 1

2a � x �(� ni n pi � x �	� rp
i � x � on Γi � (5.8f)
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where H is the lengths of the subdomain. This leads to subdomain Schur complement
matrices

_
S � 1

i . Our preconditioner is now given by

P � ∑
i

Di � T
i

_
S � 1

i � iDi 
5.4.2 Numerical Results

Figure 5.8 shows a typical computed temperature profile for the controlled problem on a
64 � 64 grid with a 4 � 4 subdomain partition. The obtained boundary control is shown in
Figure 5.9. We also include a side-by-side comparison of the temperature contour plots for
the controlled problem and the uncontrolled problem, in which we ignore the control u and
simply solve the forward problem (5.6b)-(5.6e), see Figures 5.10 and 5.11.
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Figure 5.8. Computed temperature y for the controlled problem.

We now discuss two experiments that help us assess the efficiency of the Robin–Robin
preconditioner. The first experiment examines the influence of the number of grid points
on the performance of the GMRES algorithm with the Robin–Robin preconditioner. The
results are presented in Table 5.11. They indicate that the number of GMRES iterations
grows in nearly constant increments as the number of grid points is doubled in both x and
y direction. Thus, for the solid/fluid control example, the performance of the Robin-Robin
preconditioner is not mesh-independent.

In the second experiment, we examine the dependence on the number of subdomains.
We focus on 4 � 4, 8 � 8, 16 � 16, and 32 � 32 subdomain partitions on a 128 � 128 grid.
The results of Table 5.12 indicate that the number of GMRES iterations is proportional to
the number of subdomains in the direction of the velocity field. This result agrees with the
observations made in the previous example sections.
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Figure 5.9. Computed boundary control u.

4 � 4 Partition
Grid Size 16 � 16 32 � 32 64 � 64 128 � 128
Iterations 58 77 94 109

8 � 8 Partition
Grid Size 16 � 16 32 � 32 64 � 64 128 � 128
Iterations 80 121 163 201

Table 5.11. GMRES iterations for varying numbers of grid
points, solid/fluid example.

Partition 4 � 4 8 � 8 16 � 16 32 � 32
Iterations 109 201 325 487

Table 5.12. GMRES iterations for varying numbers of subdo-
mains, solid/fluid example.
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6 Conclusions

We have introduced an optimization-level domain decomposition preconditioner for advec-
tion dominated linear-quadratic elliptic optimal control problems, which extends the work
of [4, 3] to the optimization context.

The tasks required for the application of the domain decomposition preconditioner are
closely related to what is required for the solution of the global optimal control problem,
which allows code reuse and enables optimization-level parallelization of existing solvers
for advection dominated linear-quadratic elliptic optimal control problems.

Numerical experiments have shown that the preconditioner is fairly insensitive to the
velocity, the viscosity and the control regularization parameter. For distributed control and
Robin boundary control test problems the preconditioner deteriorates only slowly as the
number of subdomains increased.

Unfortunately, a theoretical explanation for the performance of the preconditioner is
not yet available. Theoretical investigations, the application of the preconditioner to other
problems, in particular 3D problems, and the design and incorporation of coarse spaces
into the preconditioner are planned.
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